Competitive Mechanism of Stereocomplexes and Homocrystals in High-Performance Symmetric and Asymmetric Poly(lactic acid) Enantiomers: Qualitative Methods

被引:17
作者
Guo, Mingwei [1 ]
Wu, Wenjing [1 ]
Wu, Weixin [1 ]
Gao, Qinwei [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIPLE MELTING BEHAVIOR; POLY(L-LACTIC ACID); CRYSTALLIZATION KINETICS; MOLECULAR-WEIGHTS; PLLA/PDLA BLENDS; POLYLACTIDE; TRANSITION; CRYSTALS; PACKING; PDLA;
D O I
10.1021/acsomega.2c05198
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To systematically explore the critical contributions of both molecular weights and crystallization temperature and chain length and molar ratios to the formation of stereocomplexes (SCs), our group quantitatively prepared a wide MW range of symmetric and asymmetric poly(lactic acid) (PLA) racemic blends, which contains L-MW PLLA with Mn > 6k g/mol. The crystallinity and relative fraction of SCs increase with Tc, and the SCs are exclusively formed at Tc > 180 degrees C in M/H-MW racemic blends. When MWs of one of the enantiomers are over 6k and less than 41k, multiple stereocomplexation is clear in the asymmetric racemic blends and more ordered SCs form with less entanglement or the amorphous region compared to those for the MW of the enantiomers over 41k in the symmetric/asymmetric enantiomers. When the MW of the blends is more than 41k, SCs and homocrystals (HCs) coexist in the symmetric enantiomers and the multicomplexation can restrict the asymmetric enantiomers. This study provides a deep comprehensive insight into the stereocomplex crystallization mechanism of polymers and provides a reference value for future research attempting to prepare stereocomplex materials.
引用
收藏
页码:41412 / 41425
页数:14
相关论文
共 61 条
[1]  
Aeschelmann F., 2015, Industrial Biotechnology, V11, P154, DOI DOI 10.1089/IND.2015.28999.FAE
[2]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[3]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[4]   Recent Advances in Processing of Stereocomplex-Type Polylactide [J].
Bai, Hongwei ;
Deng, Shihao ;
Bai, Dongyu ;
Zhang, Qin ;
Fu, Qiang .
MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (23)
[5]   Thermal and mechanical properties of plasticized poly(L-lactic acid) [J].
Baiardo, M ;
Frisoni, G ;
Scandola, M ;
Rimelen, M ;
Lips, D ;
Ruffieux, K ;
Wintermantel, E .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (07) :1731-1738
[6]   Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s [J].
Brizzolara, D ;
Cantow, HJ ;
Diederichs, K ;
Keller, E ;
Domb, AJ .
MACROMOLECULES, 1996, 29 (01) :191-197
[7]   Triangular polymer single crystals: Stereocomplexes, twins, and frustrated structures [J].
Cartier, L ;
Okihara, T ;
Lotz, B .
MACROMOLECULES, 1997, 30 (20) :6313-6322
[8]   Unusual Radiating-Stripe Morphology in Nonequimolar Mixtures of Poly(L-lactic acid) with Poly(D-lactic acid) [J].
Chen, Hsin-Ping ;
Nagarajan, Selvaraj ;
Woo, Eamor M. .
MACROMOLECULES, 2020, 53 (06) :2157-2168
[9]   Molecular Structural Basis for Stereocomplex Formation of Polylactide Enantiomers in Dilute Solution [J].
Chen, Wei ;
Wang, Shijun ;
Zhang, Wei ;
Ke, Yutian ;
Hong, You-lee ;
Miyoshi, Toshikazu .
ACS MACRO LETTERS, 2015, 4 (11) :1264-1267
[10]   Stability and Reorganization of α′-Crystals in Random L/D-Lactide Copolymers [J].
Di Lorenzo, Maria Laura ;
Androsch, Rene .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2016, 217 (13) :1534-1538