Planar-Integrated Magneto-Optical Trap

被引:33
作者
Chen, Liang [1 ,4 ]
Huang, Chang-Jiang [1 ,4 ]
Xu, Xin-Biao [1 ,4 ]
Zhang, Yi-Chen [1 ,4 ]
Ma, Dong-Qi [1 ,4 ]
Lu, Zheng-Tian [2 ,4 ]
Wang, Zhu-Bo [1 ,4 ]
Chen, Guang-Jie [1 ,4 ]
Zhang, Ji-Zhe [1 ,4 ]
Tang, Hong X. [3 ]
Dong, Chun-Hua [1 ,4 ]
Liu, Wen [5 ]
Xiang, Guo-Yong [1 ,4 ]
Guo, Guang-Can [1 ,4 ]
Zou, Chang-Ling [1 ,4 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China
[3] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, USTC Ctr Micro & Nanoscale Res & Fabricat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
NEUTRAL ATOMS; SINGLE-LASER; BEAM; CHIP;
D O I
10.1103/PhysRevApplied.17.034031
中图分类号
O59 [应用物理学];
学科分类号
摘要
The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat grating chip simplifies the conventional six-beam configuration down to a single laser beam, and the flat coil chip replaces the conventional anti-Helmholtz coils of cylindrical geometry. Up to 106 cold 87Rb atoms are trapped by the planar-integrated MOT, with the atom cloud being approximately 6 mm above the chip surface. This configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock, and quantum memory devices.
引用
收藏
页数:7
相关论文
共 50 条
[1]  
Barker DS, 2019, PHYS REV APPL, V11, DOI [10.1103/PhysRevApplied.11.064023, 10.1103/physrevapplied.11.064023]
[2]   MAGNETOSTATIC TRAPPING FIELDS FOR NEUTRAL ATOMS [J].
BERGEMAN, T ;
EREZ, G ;
METCALF, HJ .
PHYSICAL REVIEW A, 1987, 35 (04) :1535-1546
[3]   Stand-alone vacuum cell for compact ultracold quantum technologies [J].
Burrow, Oliver S. ;
Osborn, Paul F. ;
Boughton, Edward ;
Mirando, Francesco ;
Burt, David P. ;
Griffin, Paul F. ;
Arnold, Aidan S. ;
Riis, Erling .
APPLIED PHYSICS LETTERS, 2021, 119 (12)
[4]  
Cooper NR, 2019, REV MOD PHYS, V91, DOI [10.1103/revmodphys.91.015005, 10.1103/RevModPhys.91.015005]
[5]   Design and fabrication of diffractive atom chips for laser cooling and trapping [J].
Cotter, J. P. ;
McGilligan, J. P. ;
Griffin, P. F. ;
Rabey, I. M. ;
Docherty, K. ;
Riis, E. ;
Arnold, A. S. ;
Hinds, E. A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (06)
[6]   Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant [J].
deBeauvoir, B ;
Nez, F ;
Julien, L ;
Cagnac, B ;
Biraben, F ;
Touahri, D ;
Hilico, L ;
Acef, O ;
Clairon, A ;
Zondy, JJ .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :440-443
[7]   Guiding neutral atoms with a wire [J].
Denschlag, J ;
Cassettari, D ;
Schmiedmayer, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (10) :2014-2017
[8]   Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble [J].
Ding, Dong-Sheng ;
Zhang, Wei ;
Zhou, Zhi-Yuan ;
Shi, Shuai ;
Xiang, Guo-Yong ;
Wang, Xi-Shi ;
Jiang, Yun-Kun ;
Shi, Bao-Sen ;
Guo, Guang-Can .
PHYSICAL REVIEW LETTERS, 2015, 114 (05)
[9]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[10]  
Essen L., 1955, NATURE, V176, P280, DOI DOI 10.1038/176280A0