Learning Task-Specific Dynamics to Improve Whole-Body Control
被引:0
作者:
Gams, Andrej
论文数: 0引用数: 0
h-index: 0
机构:
Jozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, SloveniaJozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
Gams, Andrej
[1
]
Mason, Sean A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Computat Learning & Motor Control Lab, Los Angeles, CA USAJozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
Mason, Sean A.
[2
]
论文数: 引用数:
h-index:
机构:
Ude, Ales
[1
]
Schaal, Stefan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Computat Learning & Motor Control Lab, Los Angeles, CA USAJozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
Schaal, Stefan
[2
]
Righetti, Ludovic
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Tandon Sch Engn, New York, NY USA
Max Planck Inst Intelligent Syst, Tubingen, GermanyJozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
Righetti, Ludovic
[3
,4
]
机构:
[1] Jozef Stefan Inst, Dept Automat Biocybernet & Robot, Humanoid & Cognit Robot Lab, Ljubljana, Slovenia
[2] Univ Southern Calif, Computat Learning & Motor Control Lab, Los Angeles, CA USA
[3] NYU, Tandon Sch Engn, New York, NY USA
[4] Max Planck Inst Intelligent Syst, Tubingen, Germany
来源:
2018 IEEE-RAS 18TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS)
|
2018年
基金:
欧盟地平线“2020”;
关键词:
MOVEMENT PRIMITIVES;
D O I:
暂无
中图分类号:
TP24 [机器人技术];
学科分类号:
080202 ;
1405 ;
摘要:
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, good tracking accuracy often necessitates high feedback gains, which leads to undesirable stiff behaviors. The magnitude of these gains is anyways often strongly limited by the control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.