Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet

被引:341
作者
Kimata, Motoi [1 ,2 ,5 ]
Chen, Hua [3 ,6 ]
Kondou, Kouta [2 ,4 ]
Sugimoto, Satoshi [1 ,7 ]
Muduli, Prasanta K. [1 ]
Ikhlas, Muhammad [1 ]
Omori, Yasutomo [1 ]
Tomita, Takahiro [1 ,2 ]
MacDonald, Allan H. [3 ]
Nakatsuji, Satoru [1 ,2 ]
Otani, Yoshichika [1 ,2 ,4 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba, Japan
[2] Japan Sci & Technol Agcy JST, CREST, Saitama, Japan
[3] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[4] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama, Japan
[5] Tohoku Univ, Inst Mat Res, Sendai, Miyagi, Japan
[6] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[7] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1038/s41586-018-0853-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin Hall effect (SHE)(1-5) achieves coupling between charge currents and collective spin dynamics in magnetically ordered systems and is a key element of modern spintronics(6-9). However, previous research has focused mainly on non-magnetic materials, so the magnetic contribution to the SHE is not well understood. Here we show that antiferromagnets have richer spin Hall properties than do non-magnetic materials. We find that in the non-collinear antiferromagnet(10) Mn3Sn, the SHE has an anomalous sign change when its triangularly ordered moments switch orientation. We observe contributions to the SHE (which we call the magnetic SHE) and the inverse SHE (the magnetic inverse SHE) that are absent in non-magnetic materials and that can be dominant in some magnetic materials, including antiferromagnets. We attribute the dominance of this magnetic mechanism in Mn3Sn to the momentum-dependent spin splitting that is produced by non-collinear magnetic order. This discovery expands the horizons of antiferromagnet spintronics and spin-charge coupling mechanisms.
引用
收藏
页码:627 / +
页数:15
相关论文
共 33 条
[11]   Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets [J].
Garate, Ion ;
MacDonald, A. H. .
PHYSICAL REVIEW B, 2009, 80 (13)
[12]   Spin-motive forces and current-induced torques in ferromagnets [J].
Hals, Kjetil M. D. ;
Brataas, Arne .
PHYSICAL REVIEW B, 2015, 91 (21)
[13]   Analysis of the line shape of electrically detected ferromagnetic resonance [J].
Harder, M. ;
Cao, Z. X. ;
Gui, Y. S. ;
Fan, X. L. ;
Hu, C-M. .
PHYSICAL REVIEW B, 2011, 84 (05)
[14]   Spin Hall effect [J].
Hirsch, JE .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1834-1837
[15]  
Ikhlas M, 2017, NAT PHYS, V13, P1085, DOI [10.1038/NPHYS4181, 10.1038/nphys4181]
[16]  
Jungwirth T, 2012, NAT MATER, V11, P382, DOI [10.1038/NMAT3279, 10.1038/nmat3279]
[17]   Observation of the spin hall effect in semiconductors [J].
Kato, YK ;
Myers, RC ;
Gossard, AC ;
Awschalom, DD .
SCIENCE, 2004, 306 (5703) :1910-1913
[18]   Room-temperature reversible spin Hall effect [J].
Kimura, T. ;
Otani, Y. ;
Sato, T. ;
Takahashi, S. ;
Maekawa, S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[19]   Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum [J].
Liu, Luqiao ;
Pai, Chi-Feng ;
Li, Y. ;
Tseng, H. W. ;
Ralph, D. C. ;
Buhrman, R. A. .
SCIENCE, 2012, 336 (6081) :555-558
[20]   Indication of intrinsic spin Hall effect in 4d and 5d transition metals [J].
Morota, M. ;
Niimi, Y. ;
Ohnishi, K. ;
Wei, D. H. ;
Tanaka, T. ;
Kontani, H. ;
Kimura, T. ;
Otani, Y. .
PHYSICAL REVIEW B, 2011, 83 (17)