FORMAL DERIVATION OF QUANTUM DRIFT-DIFFUSION EQUATIONS WITH SPIN-ORBIT INTERACTION

被引:0
作者
Barletti, Luigi [1 ]
Holzinger, Philipp [2 ]
Juengel, Ansgar [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Haupt Str 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Wigner– Boltzmann equation; diffusion limit; spin-orbit interaction; quantum maximum entropy principle; semiclassical model; Bohm potential; ELECTRON-TRANSPORT; MODELS; STATE; GAS;
D O I
10.3934/krm.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum drift-diffusion equations for a two-dimensional electron gas with spin-orbit interactions of Rashba type are formally derived from a collisional Wigner equation. The collisions are modeled by a Bhatnagar-Gross- Krook-type operator describing the relaxation of the electron gas to a local equilibrium that is given by the quantum maximum entropy principle. Because of non-commutativity properties of the operators, the standard diffusion scaling cannot be used in this context, and a hydrodynamic time scaling is required. A Chapman-Enskog procedure leads, up to first order in the relaxation time, to a system of nonlocal quantum drift-diffusion equations for the charge density and spin vector densities. Local equations including the Bohm potential are obtained in the semiclassical expansion up to second order in the scaled Planck constant. The main novelty of this work is that all spin components are considered, while previous models only consider special spin directions.
引用
收藏
页码:257 / 282
页数:26
相关论文
共 21 条
[1]   QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR [J].
ANCONA, MG ;
IAFRATE, GJ .
PHYSICAL REVIEW B, 1989, 39 (13) :9536-9540
[2]  
[Anonymous], METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-241950-8.50008-3
[3]  
[Anonymous], 2008, ADV MATH SCI APPL
[4]   Quantum drift-diffusion modeling of spin transport in nanostructures [J].
Barletti, Luigi ;
Mehats, Florian .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
[5]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[6]   The bipolar quantum drift-diffusion model [J].
Chen, Xiu Qing ;
Chen, Li .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (04) :617-638
[7]   Quantum energy-transport and drift-diffusion models [J].
Degond, P ;
Méhats, F ;
Ringhofer, C .
JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) :625-667
[8]   Quantum moment hydrodynamics and the entropy principle [J].
Degond, P ;
Ringhofer, C .
JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) :587-628
[9]   An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes [J].
Degond, Pierre ;
Gallego, Samy ;
Mehats, Florian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (01) :226-249
[10]   On the minimization of quantum entropies under local constraints [J].
Duboscq, Romain ;
Pinaud, Olivier .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 :87-118