Existence and maximal Lp-regularity of solutions for the porous medium equation on manifolds with conical singularities

被引:28
作者
Roidos, Nikolaos [1 ]
Schrohe, Elmar [1 ]
机构
[1] Leibniz Univ Hannover, Inst Anal, Welfengarten 1, D-30167 Hannover, Germany
关键词
Conically degenerate operators; fast diffusion equation; Fuchs type operators; manifolds with conical singularities; maximal L-p-regularity; porous medium equation; FOURIER MULTIPLIER THEOREMS; BOUNDED IMAGINARY POWERS; PARABOLIC EQUATIONS; DIFFERENTIAL-OPERATORS; CLOSEDNESS; SUM;
D O I
10.1080/03605302.2016.1219745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the porous medium equation on manifolds with conical singularities and show existence, uniqueness, and maximal L-p-regularity of a short-time solution. In particular, we obtain information on the short time asymptotics of the solution near the conical point. Our method is based on bounded imaginary powers results for cone differential operators on Mellin-Sobolev spaces and R-sectoriality perturbation techniques.
引用
收藏
页码:1441 / 1471
页数:31
相关论文
共 33 条
[1]   Function spaces on singular manifolds [J].
Amann, H. .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (5-6) :436-475
[2]  
[Anonymous], 1997, Applied Math. Sci.
[3]  
[Anonymous], 2003, MEMOIRS AM MATH SOC
[4]  
[Anonymous], [No title captured]
[5]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[6]   Asymptotics of the porous media equation via Sobolev inequalities [J].
Bonforte, M ;
Grillo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (01) :33-62
[7]  
Bourdaud G., 2011, RIMS Kokyuroku Bessatsu B, VB26, P93
[8]   AN INDEX THEOREM FOR 1ST ORDER REGULAR SINGULAR-OPERATORS [J].
BRUNING, J ;
SEELEY, R .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (04) :659-714
[9]  
Clement P., 1993, Adv. Math. Sci. Appl., V3, P17
[10]   Bounded imaginary powers of differential operators on manifolds with conical singularities [J].
Coriasco, S ;
Schrohe, E ;
Seiler, J .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (02) :235-269