Quantum fields in toroidal topology

被引:38
作者
Khanna, F. C. [2 ,3 ]
Malbouisson, A. P. C. [4 ]
Malbouisson, J. M. C. [5 ]
Santana, A. E. [1 ,2 ]
机构
[1] Univ Brasilia, Int Ctr Condensed Matter Phys, Inst Fis, BR-70910900 Brasilia, DF, Brazil
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[3] TRIUMF, Vancouver, BC V6T 2A3, Canada
[4] Ctr Brasileiro Pesquisas Fis MCT, BR-22290180 Rio De Janeiro, Brazil
[5] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum fields; Toroidal topology; Compactification; c*- and Lie algebra; COMPACTIFIED LAMBDA-PHI(4) THEORY; INTERACTING SCALAR FIELD; JONA-LASINIO MODEL; GROSS-NEVEU MODEL; CONNECTED SPACETIME; MULTIPLE PRODUCTION; SYMMETRY-BREAKING; PHASE-STRUCTURE; CASIMIR ENERGY; GAUGE-FIELDS;
D O I
10.1016/j.aop.2011.07.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The standard representation of c*-algebra is used to describe fields in compactified space-time dimensions characterized by topologies of the type Gamma(d)(D) = (S-1)(d) x MD-d The modular operator is generalized to introduce representations of isometry groups. The Poincare symmetry is analyzed and then we construct the modular representation by using linear transformations in the field modes, similar to the Bogoliubov transformation. This provides a mechanism for compactification of the Minkowski space-time, which follows as a generalization of the Fourier integral representation of the propagator at finite temperature. An important result is that the 2 x 2 representation of the real-time formalism is not needed. The end result on calculating observables is described as a condensate in the ground state. We initially analyze the free Klein-Gordon and Dirac fields, and then formulate non-abelian gauge theories in Gamma(d)(D). Using the S-matrix, the decay of particles is calculated in order to show the effect of the compactification. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2634 / 2657
页数:24
相关论文
共 56 条
[1]   Finite-size effects on the phase structure of the Nambu-Jona-Lasinio model [J].
Abreu, L. M. ;
Gomes, M. ;
da Silva, A. J. .
PHYSICS LETTERS B, 2006, 642 (5-6) :551-562
[2]   Phase structure of difermion condensates in the Nambu-Jona-Lasinio model: The size-dependent properties [J].
Abreu, L. M. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. .
EPL, 2010, 90 (01)
[3]   Finite-size effects on the chiral phase diagram of four-fermion models in four dimensions [J].
Abreu, L. M. ;
Malbouisson, A. P. C. ;
Malbouisson, J. M. C. ;
Santana, A. E. .
NUCLEAR PHYSICS B, 2009, 819 (1-2) :127-138
[4]   Critical behavior of the compactified λφ4 theory -: art. no. 012304 [J].
Abreu, LM ;
de Calan, C ;
Malbouisson, APC ;
Malbouisson, JMC ;
Santana, AE .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (01)
[5]   Topology, mass and Casimir energy [J].
Ahmadi, N ;
Nouri-Zonoz, M .
NUCLEAR PHYSICS B, 2006, 738 (1-2) :269-282
[6]   Massive spinor fields in flat spacetimes with nontrivial topology [J].
Ahmadi, N ;
Nouri-Zonoz, M .
PHYSICAL REVIEW D, 2005, 71 (10)
[7]  
[Anonymous], 1964, ZH EKSP TEOR FIZ+
[8]   EXPECTATION VALUE FORMALISM IN QUANTUM FIELD THEORY .1. [J].
BAKSHI, PM ;
MAHANTHAPPA, KT .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) :1-&
[9]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[10]   Potentials in N=4 superconformal mechanics [J].
Bellucci, Stefano ;
Krivonos, Sergey .
PHYSICAL REVIEW D, 2009, 80 (06)