Generating grid chaotic sea from system without equilibrium point

被引:69
作者
Wang, Ning [1 ]
Zhang, Guoshan [1 ]
Kuznetsov, N., V [2 ,3 ,4 ]
Li, Houzhen [5 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg 198504, Russia
[3] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla 40014, Finland
[4] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2022年 / 107卷
基金
俄罗斯科学基金会; 中国国家自然科学基金;
关键词
Conservative chaos; No-equilibrium system; Perpetual point; Hidden attractor; Hidden torus; HIDDEN ATTRACTORS; SCROLL; CIRCUITS; FLOWS;
D O I
10.1016/j.cnsns.2021.106194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamical system without equilibrium point is considered having hidden dynamics. It is relatively difficult to locate the attractor in the state space as its attraction basin has nothing to do with the equilibrium point. Especially, generation of multi-scroll chaos from no-equilibrium system is a challenging task. In this paper, using sine function, a modified Sprott-A system without equilibrium point but with perpetual points is presented. In particular, this system has the conservative property of zero-sum Lyapunov exponents and thus can generate chaotic sea rather than an attractor. The locations of the scrolls of chaotic sea are found having potential relevance to the sine nonlinearities and perpetual points. Different number of scrolls can be extended only adjusting the system parameters. Three cases of five-term Sprott-A system variants with single-direction multi-scroll/multi-double-scroll chaotic sea and two-direction grid chaotic sea are demonstrated. Besides, hidden tori are found coexisting with the chaotic sea. Numerical simulations and hardware experiments both confirm the complex dynamics of the system. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Hidden extreme multistability in memristive hyperchaotic system [J].
Bao, B. C. ;
Bao, H. ;
Wang, N. ;
Chen, M. ;
Xu, Q. .
CHAOS SOLITONS & FRACTALS, 2017, 94 :102-111
[2]  
Chen G., 2021, Chaos Theory and Applications, V3, P1
[3]   Four-Wing Hidden Attractors with One Stable Equilibrium Point [J].
Deng, Quanli ;
Wang, Chunhua ;
Yang, Linmao .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (06)
[4]   Multi-scroll hidden attractors with two stable equilibrium points [J].
Deng, Quanli ;
Wang, Chunhua .
CHAOS, 2019, 29 (09)
[5]   Describing chaotic attractors: Regular and perpetual points [J].
Dudkowski, Dawid ;
Prasad, Awadhesh ;
Kapitaniak, Tomasz .
CHAOS, 2018, 28 (03)
[6]   Hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Jafari, Sajad ;
Kapitaniak, Tomasz ;
Kuznetsov, Nikolay V. ;
Leonov, Gennady A. ;
Prasad, Awadhesh .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 :1-50
[7]   Perpetual points and hidden attractors in dynamical systems [J].
Dudkowski, Dawid ;
Prasad, Awadhesh ;
Kapitaniak, Tomasz .
PHYSICS LETTERS A, 2015, 379 (40-41) :2591-2596
[8]   A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach [J].
Echenausia-Monroy, J. L. ;
Gilardi-Velazquez, H. E. ;
Jaimes-Reategui, R. ;
Aboites, V ;
Huerta-Cuellar, G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
[9]   Multi-scroll hidden attractors in improved Sprott A system [J].
Hu, Xiaoyu ;
Liu, Chongxin ;
Liu, Ling ;
Ni, Junkang ;
Li, Shilei .
NONLINEAR DYNAMICS, 2016, 86 (03) :1725-1734
[10]   Categories of Conservative Flows [J].
Jafari, Sajad ;
Sprott, Julien C. ;
Dehghan, Soroush .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (02)