Discovery of high-entropy ceramics via machine learning

被引:191
作者
Kaufmann, Kevin [1 ]
Maryanovsky, Daniel [1 ,2 ]
Mellor, William M. [3 ]
Zhu, Chaoyi [3 ]
Rosengarten, Alexander S. [1 ]
Harrington, Tyler J. [3 ]
Oses, Corey [4 ]
Toher, Cormac [4 ]
Curtarolo, Stefano [4 ,5 ]
Vecchio, Kenneth S. [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[4] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27706 USA
[5] Duke Univ, Mat Sci Elect Engn Phys & Chem, Durham, NC 27708 USA
关键词
TRANSITION-METAL; MECHANICAL-PROPERTIES; SCIENCE; CLASSIFICATION; STABILITY; DESIGN; ALLOY;
D O I
10.1038/s41524-020-0317-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications, predicting their formation remains a hindrance for rational discovery of new systems. Experimental approaches are based on physical intuition and/or expensive trial and error strategies. Most computational methods rely on the availability of sufficient experimental data and computational power. Machine learning (ML) applied to materials science can accelerate development and reduce costs. In this study, we propose an ML method, leveraging thermodynamic and compositional attributes of a given material for predicting the synthesizability (i.e., entropy-forming ability) of disordered metal carbides. The relative importance of the thermodynamic and compositional features for the predictions are then explored. The approach's suitability is demonstrated by comparing values calculated with density functional theory to ML predictions. Finally, the model is employed to predict the entropy-forming ability of 70 new compositions; several predictions are validated by additional density functional theory calculations and experimental synthesis, corroborating the effectiveness in exploring vast compositional spaces in a high-throughput manner. Importantly, seven compositions are selected specifically, because they contain all three of the Group VI elements (Cr, Mo, and W), which do not form room temperature-stable rock-salt monocarbides. Incorporating the Group VI elements into the rock-salt structure provides further opportunity for tuning the electronic structure and potentially material performance.
引用
收藏
页数:9
相关论文
共 67 条
[1]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[2]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[3]   Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides [J].
Balasubramanian, Karthik ;
Khare, Sanjay V. ;
Gall, Daniel .
ACTA MATERIALIA, 2018, 152 :175-185
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   The AFLOW standard for high-throughput materials science calculations [J].
Calderon, Camilo E. ;
Plata, Jose J. ;
Toher, Cormac ;
Oses, Corey ;
Levy, Ohad ;
Fornari, Marco ;
Natan, Amir ;
Mehl, Michael J. ;
Hart, Gus ;
Nardelli, Marco Buongiorno ;
Curtarolo, Stefano .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 :233-238
[6]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[7]   Nanograined Half-Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High-Throughput Statistical Study [J].
Carrete, Jesus ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (47) :7427-7432
[8]  
Caruana R., 2006, P 23 INT C MACHINE L, P161, DOI [10.1016/j.fhj.2025.100233, DOI 10.1016/J.FHJ.2025.100233, 10.1145/1143844.1143865]
[9]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
[10]   AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Wang, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Taylor, Richard H. ;
Nelson, Lance J. ;
Hart, Gus L. W. ;
Sanvito, Stefano ;
Buongiorno-Nardelli, Marco ;
Mingo, Natalio ;
Levy, Ohad .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :227-235