Quaternionic B-splines

被引:5
作者
Hogan, Jeffrey A. [1 ]
Massopust, Peter [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Math Bldg V123,Univ Dr, Callaghan, NSW 2308, Australia
[2] Tech Univ Munich, Ctr Math, Res Unit M15, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Quatemions; B-splines; Clifford algebra; Quaternionic binomial; Quaternionic Gamma function; Multiresolution analysis;
D O I
10.1016/j.jat.2017.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce B-splines B-q of quaternionic order q, defined on the real line for the purposes of multi-channel signal analysis. The functions B-q are defined first by their Fourier transforms, then as the solutions of a distributional differential equation of quaternionic order. The equivalence of these definitions requires properties of quaternionic Gamma functions and binomial expansions, both of which we investigate. The relationship between B-q and a backwards difference operator is shown, leading to a recurrence formula. We show that the collection of integer shifts of B-q is a Riesz basis for its span, hence generating a multiresolution analysis. Finally, we demonstrate the pointwise and L-P convergence of the quaternionic B-splines to quaternionic Gaussian functions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 65
页数:23
相关论文
共 10 条
[1]  
Arflcen G., 1966, MATH METHODS PHYS
[2]   Framelets: MRA-based constructions of wavelet frames [J].
Daubechies, I ;
Han, B ;
Ron, A ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (01) :1-46
[3]   Complex B-splines [J].
Forster, B ;
Blu, T ;
Unser, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) :261-282
[4]  
Hogan J. A., 2012, NUMER FUNCT ANAL OPT, V33, P1095
[5]  
Olhede S., 2006, TR0602 IMP COLL LOND, P1
[6]   The Monogenic Wavelet Transform [J].
Olhede, Sofia C. ;
Metikas, Georgios .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (09) :3426-3441
[7]   Fractional splines and wavelets [J].
Unser, M ;
Blu, T .
SIAM REVIEW, 2000, 42 (01) :43-67
[8]   ON THE ASYMPTOTIC CONVERGENCE OF B-SPLINE WAVELETS TO GABOR FUNCTIONS [J].
UNSER, M ;
ALDROUBI, A ;
EDEN, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :864-871
[9]  
Wojtaszczyk P., 1997, LONDON MATH SOC, V37
[10]  
ZHELUDEV VA, 1982, DIFF EQUAT+, V18, P1404