A formula for angular and hyperangular integration

被引:22
作者
Avery, J [1 ]
机构
[1] Univ Copenhagen, HC Orsted Inst, DK-2100 Copenhagen, Denmark
关键词
Spherical Harmonic; Homogeneous Polynomial; Harmonic Polynomial; Spherical Bessel Function; Hyperspherical Harmonic;
D O I
10.1023/A:1019174720234
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A formula is derived which allows angular or hyperangular integration to be performed on any function of the coordinates of a d-dimensional space, provided that it is possible to expand the function as a polynomial in the coordinates x(1),x(2),...,x(d). The expansion need not be carried out for the formula to be applied.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 11 条
[1]   ON HYPERSPHERICAL MAPPING AND HARMONIC EXPANSIONS FOR POTENTIAL-ENERGY SURFACES [J].
AQUILANTI, V ;
GROSSI, G ;
LAGANA, A .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (03) :1587-1588
[3]   EVALUATION OF ANGULAR INTEGRALS BY HARMONIC PROJECTION [J].
AVERY, J ;
ANTONSEN, F .
THEORETICA CHIMICA ACTA, 1993, 85 (1-3) :33-42
[4]  
Avery J., 1994, CONCEPTUAL TRENDS QU, P135
[5]  
AVERY J, 1989, HYPERSPHERICAL HARMO, pCH1
[6]  
Herschbach D. R, 1993, Dimensional Scaling in Chemical Physics
[7]   DIMENSIONAL INTERPOLATION FOR 2-ELECTRON ATOMS [J].
HERSCHBACH, DR .
JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (02) :838-851
[8]   EVALUATION OF ANGULAR INTEGRALS IN ROTATIONAL INVARIANTS [J].
MICHELS, MAJ .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1981, 20 (04) :951-952
[9]   MOLECULAR ORBITALS IN MOMENTUM SPACE [J].
SHIBUYA, T ;
WULFMAN, CE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 286 (1406) :376-&
[10]  
Vilenkin N. Ja., 1968, TRANSLATIONS MATH MO, V22