Finding Δ(Σ) for a Surface Σ of Characteristic-4

被引:3
作者
Luo, Rong [1 ]
Miao, Zhengke [2 ]
Zhao, Yue [3 ]
机构
[1] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
edge colorings; class one; class two; critical graphs; surfaces; INDEX-CRITICAL GRAPHS; EDGE COLORINGS; MAXIMUM DEGREE-7;
D O I
10.1002/jgt.21997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each surface Sigma, we define Delta(Sigma) = max{Delta(G)| G is a class two graph of maximum degree Delta(G) that can be embedded in Sigma}. Hence, Vizing's Planar Graph Conjecture can be restated as Delta(Sigma) = 5, if Sigma is a sphere. In this article, by applying some newly obtained adjacency lemmas, we show that Delta(Sigma) = 8 if Sigma is a surface of characteristic chi(Sigma) = -4. Until now, all known Delta(Sigma)s satisfy Delta(Sigma) = J(chi(Sigma)) = left perpendicular 3 + root 13-6 chi(Sigma) right perpendicular. This is the first case where Delta(Sigma) = J(chi(Sigma))-1. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:277 / 302
页数:26
相关论文
共 17 条
[1]  
[Anonymous], 1968, USPEKHIMAT NAUK
[2]   SMALL GRAPHS CRITICAL WITH RESPECT TO EDGE COLORINGS [J].
BEINEKE, LW ;
FIORINI, S .
DISCRETE MATHEMATICS, 1976, 16 (02) :109-121
[3]   Chromatic-index-critical graphs of orders 13 and 14 [J].
Bokal, D ;
Brinkmann, G ;
Grünewald, S .
DISCRETE MATHEMATICS, 2005, 300 (1-3) :16-29
[4]   Chromatic-index-critical graphs of orders 11 and 12 [J].
Brinkmann, G ;
Steffen, E .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (08) :889-900
[5]   CHROMATIC INDEX CRITICAL GRAPHS OF ORDER-9 [J].
CHETWYND, AG ;
YAP, HP .
DISCRETE MATHEMATICS, 1983, 47 (01) :23-33
[6]   Edge colorings of graphs embeddable in a surface of low genus [J].
Hind, H ;
Zhao, Y .
DISCRETE MATHEMATICS, 1998, 190 (1-3) :107-114
[7]   Finding the exact bound of the maximum degrees of class two graphs embeddable in a surface of characteristic ∈∈{-1,-2,-3} [J].
Luo, Rong ;
Zhao, Yue .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (04) :707-720
[8]   Finding Δ(Σ) for a Surface Σ of Characteristic χ(Σ) =-5 [J].
Luo, Rong ;
Zhao, Yue .
JOURNAL OF GRAPH THEORY, 2011, 68 (02) :148-168
[9]  
Mel'nikov L.S., 1970, Mat. Zametki, V7, P671
[10]  
Mel'nikov L.S., 1970, Math. Notes, V7, P405