HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

被引:20
作者
Yang, Gang [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math Phys & Software Engn, Lanzhou 730070, Peoples R China
关键词
Ding-Chen ring; Ding projective and Ding injective module; Gorenstein flat module; precover; preenvelope; balanced functors; COHERENT RINGS; FLAT COVERS; DIMENSIONS; ENVELOPES;
D O I
10.4134/JKMS.2012.49.1.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for sonic non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein flat modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein flat and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Horn and tensor.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 28 条
[1]  
Auslander M., 1969, Memoirs Amer. Math. Soc., V94
[2]   Rings Over Which the Class of Gorenstein Flat Modules is Closed Under Extensions [J].
Bennis, Driss .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) :855-868
[3]   COFLAT RINGS AND MODULES [J].
DAMIANO, RF .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 81 (02) :349-369
[4]   STRONGLY GORENSTEIN FLAT MODULES [J].
Ding, Nanqing ;
Li, Yuanlin ;
Mao, Lixin .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (03) :323-338
[5]   Coherent rings with finite self-FP-injective dimension [J].
Ding, NQ ;
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) :2963-2980
[6]   THE FLAT DIMENSIONS OF INJECTIVE-MODULES [J].
DING, NQ ;
CHEN, JL .
MANUSCRIPTA MATHEMATICA, 1993, 78 (02) :165-177
[7]   THE HOMOLOGICAL DIMENSIONS OF SIMPLE MODULES [J].
DING, NQ ;
CHEN, JL .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1993, 48 (02) :265-274
[8]   Gorenstein flat covers and Gorenstein cotorsion modules over integral group rings [J].
Enochs, E ;
Estrada, S ;
Torrecillas, B .
ALGEBRAS AND REPRESENTATION THEORY, 2005, 8 (04) :525-539
[9]  
Enochs E.E., 1995, Tsukuba J. Math., V19, P1, DOI DOI 10.21099/TKBJM/1496162796
[10]  
Enochs E. E., 2000, DEGRUYTER EXPOSITION, V30