DIVISION ALGEBRAS WITH RADICABLE MULTIPLICATIVE GROUPS

被引:7
作者
Mahdavi-Hezavehi, M. [1 ]
Motiee, M. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
Divisible group; Division algebra; Finite field extension; MAXIMAL-SUBGROUPS; TERMS;
D O I
10.1080/00927872.2010.517819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a divisible finite field extension K/F, the structure of Br(F), the Brauer group of F, is investigated. It is shown that, if F is indivisible, then Br(F) congruent to Z(2), which generalizes the Frobenius Theorem. As a consequence, when F is indivisible, the class of all finite dimensional non-commutative F-central division algebras D having radicable multiplicative groups D* is determined. In fact, it is proved that the following statements are equivalent: (1) D is radicable, (2) D contains a divisible subfield K/F, and (3) D is the ordinary quaternion division algebra and F(root-1) is divisible.
引用
收藏
页码:4084 / 4096
页数:13
相关论文
共 16 条
[1]   On the existence of normal maximal subgroups in division rings [J].
Akbari, S ;
Mahdavi-Hezavehi, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 171 (2-3) :123-131
[2]  
Becker E., 1978, MONOGRAFIAS MATH I M, V29
[3]  
Draxl P. K., 1983, LONDON MATH SOC LECT, V81
[4]   On maximal subgroups of the multiplicative group of a division algebra [J].
Hazrat, R. ;
Wadsworth, A. R. .
JOURNAL OF ALGEBRA, 2009, 322 (07) :2528-2543
[5]  
Jacobson N., 1995, BASIC ALGEBRA 2, V2
[6]  
Karpilovsky G., 1988, UNIT GROUPS CLASSICA
[7]   Crossed product conditions for central simple algebras in terms of irreducible subgroups [J].
Keshavarzipour, T. ;
Mahdavi-Hezavehi, A. .
JOURNAL OF ALGEBRA, 2007, 315 (02) :738-744
[8]  
Lam T.Y., 2001, A First Course in Noncommutative Rings, VSecond
[9]   ON QUASI ALGEBRAIC CLOSURE [J].
LANG, S .
ANNALS OF MATHEMATICS, 1952, 55 (02) :373-390
[10]   Cyclicity conditions for division algebras of prime degree [J].
Mahdavi-Hezavehi, M ;
Tignol, JP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3673-3676