Modified Function Projective Synchronization of Fractional-order Hyperchaotic Systems Based on Active Sliding Mode Control

被引:0
作者
Gao, Yuan [1 ,2 ,3 ]
Hu, Hangfang [1 ]
Yu, Ling [1 ]
Yuan, Haiying [1 ,3 ]
Dai, Xisheng [1 ,3 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Elect & Informat Engn, Liuzhou 545006, Peoples R China
[2] Guangxi Key Lab Automobile Components & Vehicle T, Liuzhou 545006, Peoples R China
[3] Dept Guangxi Educ, Key Lab Ind Proc Intelligent Control Technol, Liuzhou 545006, Peoples R China
来源
2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS) | 2017年
关键词
Fractional-order; Hyperchaotic system; Scaling function matrix; Modified function projective synchronization; Sliding mode control; CHAOTIC SYSTEMS; DIFFERENTIAL-EQUATIONS; LAG SYNCHRONIZATION; UNCERTAIN; PHASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering the time-varying scaling function matrix and system disturbances, a new sliding mode control strategy is proposed to realize modified function projective synchronization (MFPS) of two different fractional-order hyperchaotic systems, meanwhile improve the control robustness of synchronization system. From the MFPS error equations, combining a proper fractional-order exponential reaching raw, an active controller for MFPS is derived out via sliding mode control technology. By mean of the stability theorem, the asymptotic stability of synchronization error system is proved. Simulation results of the MFPS between fractional-order hyperchaoticLorenz system and Chen system demonstrate the validity of the presented method.
引用
收藏
页码:445 / 449
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Modified projective synchronization of uncertain fractional order hyperchaotic systems [J].
Bai, Jing ;
Yu, Yongguang ;
Wang, Sha ;
Song, Yu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1921-1928
[3]   The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems [J].
Chen, Yong ;
An, Hongli ;
Li, Zhibin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :96-110
[4]  
Cui L., 2010, ELECT MEASUREMENT TE, V33, P13
[5]   Adaptive sliding mode control of chaotic dynamical systems with application to synchronization [J].
Dadras, Sara ;
Momeni, Hamid Reza .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (12) :2245-2257
[6]   Sliding mode control for uncertain new chaotic dynamical system [J].
Dadras, Sara ;
Momeni, Hamid Reza ;
Majd, Vahid Johari .
CHAOS SOLITONS & FRACTALS, 2009, 41 (04) :1857-1862
[7]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[8]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[9]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496
[10]   Modified function projective synchronization of chaotic system [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2399-2404