Modeling of laser transmission contour welding process using FEA and DoE

被引:70
作者
Acherjee, Bappa [1 ]
Kuar, Arunanshu S. [1 ]
Mitra, Souren [1 ]
Misra, Dipten [2 ]
机构
[1] Jadavpur Univ, Dept Prod Engn, Kolkata 700032, India
[2] Jadavpur Univ, Sch Laser Sci & Engn, Kolkata 700032, India
关键词
Laser transmission welding; Finite element analysis; Design of experiments; SENSITIVITY-ANALYSIS; CARBON-BLACK; THERMOPLASTICS; PROFILE;
D O I
10.1016/j.optlastec.2011.12.049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this research, a systematic investigation on laser transmission contour welding process is carried out using finite element analysis (FEA) and design of experiments (DoE) techniques. First of all, a three-dimensional thermal model is developed to simulate the laser transmission contour welding process with a moving heat source. The commercial finite element code ANSYS (R) multi-physics is used to obtain the numerical results by implementing a volumetric Gaussian heat source, and combined convection-radiation boundary conditions. Design of experiments together with regression analysis is then employed to plan the experiments and to develop mathematical models based on simulation results. Four key process parameters, namely power, welding speed, beam diameter, and carbon black content in absorbing polymer, are considered as independent variables, while maximum temperature at weld interface, weld width, and weld depths in transparent and absorbing polymers are considered as dependent variables. Sensitivity analysis is performed to determine how different values of an independent variable affect a particular dependent variable. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1289
页数:9
相关论文
共 23 条
[11]  
Kagan VA, 2000, WELDING LIGHT MACHIN
[12]   Sensitivity analysis of submerged arc welding process parameters [J].
Karaoglu, Serdar ;
Secgin, Abdullah .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 202 (1-3) :500-507
[13]  
Kennish Y.C., 2002, ANTEC, P1132
[14]   Sensitivity analysis for process parameters in GMA welding processes using a factorial design method [J].
Kim, IS ;
Son, KJ ;
Yang, YS ;
Yaragada, PKDV .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2003, 43 (08) :763-769
[15]   Finite element modeling of transmission laser microjoining process [J].
Mahmood, T. ;
Mian, A. ;
Amin, M. R. ;
Auner, G. ;
Witte, R. ;
Herfurth, H. ;
Newaz, G. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 186 (1-3) :37-44
[16]   Laser transmission welding of a lap-joint: Thermal imaging observations and three-dimensional finite element modeling [J].
Mayboudi, L. S. ;
Birk, A. M. ;
Zak, G. ;
Bates, P. J. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (09) :1177-1186
[17]  
Mayboudi L.S., 2005, ICALEO 2005 C P, P402
[18]  
Mitchell M., 2000, THESIS LOUISIANA STA
[19]   Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy [J].
Padmanaban, G. ;
Balasubramanian, V. .
OPTICS AND LASER TECHNOLOGY, 2010, 42 (08) :1253-1260
[20]   Laser transmission welding of thermoplastics: Analysis of the heating phase [J].
Potente, H ;
Korte, J ;
Becker, F .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1999, 18 (10) :914-920