New Estimates on Numerical Radius and Operator Norm of Hilbert Space Operators

被引:12
作者
Hassani, Mahmoud [1 ]
Omidvar, Mohsen Erfanian [1 ]
Moradi, Hamid Reza [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
关键词
Numerical radius; operator norm; operator convex function; Hermite-Hadamard inequality; INEQUALITIES;
D O I
10.3836/tjm/1502179337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this article is to present a new approach, made up of integrals, to refine some numerical radius inequalities. Let A be a bounded linear operator on a complex Hilbert space. If 1 <= r <= 2, it is shown that omega(2r) (A) <= parallel to integral(1)(0) ((1-t) (vertical bar A vertical bar(2) + vertical bar A*vertical bar(2)/2) + t omega (A(2))I)(r) dt parallel to. Here omega (.),parallel to.parallel to are the numerical radius and the usual operator norm, vertical bar A vertical bar = (A * A)(1/2) , and I is the identity operator.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 14 条
[1]   UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) :1055-1065
[2]  
ANDO T, 1994, LINEAR ALGEBRA APPL, V198, P113
[3]   A matrix reverse Holder inequality [J].
Bourin, Jean-Christophe ;
Lee, Eun-Young ;
Fujii, Masatoshi ;
Seo, Yuki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2154-2159
[4]  
Buzano ML., 1974, Rend. Semin. Mat. Univ. Politech. Torino, V31, P405
[5]   BUZANO'S INEQUALITY HOLDS FOR ANY PROJECTION [J].
Dragomir, S. S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (03) :504-510
[6]  
Dragomir S.S., 2009, Sarajevo J. Math, V5, P269, DOI [10.5644/SJM.05.2.10, DOI 10.5644/SJM.05.2.10]
[7]  
Furuta T., 2005, Mond-Pecaric Method in Operator Inequalities.
[8]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[9]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[10]   More accurate numerical radius inequalities (II) [J].
Moradi, Hamid Reza ;
Sababheh, Mohammad .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :921-933