Real-time Detection of CMAS Corrosion Failure in APS Thermal Barrier Coatings Under Thermal Shock

被引:31
作者
Zhu, W. [1 ,2 ]
Li, Z. Y. [1 ,2 ]
Yang, L. [1 ,2 ]
Zhou, Y. C. [1 ,2 ]
Wei, J. F. [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Key Film Mat & Applicat Equipment Hunan P, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; CMAS corrosion; Failure mechanism; Acoustic emission; Infrared thermography; MAGNESIUM-ALUMINO-SILICATE; ZIRCONIA COATINGS; DAMAGE EVOLUTION; DEGRADATION; MECHANISMS; TEMPERATURE; RESISTANCE; BEHAVIOR; DELAMINATION; DEPOSITS;
D O I
10.1007/s11340-020-00603-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Calcium-magnesium-alumina-silicate (CMAS) corrosion has been regarded as the most important factor that leads to the degradation of thermal barrier coatings (TBCs). The failure mechanism of TBCs attacked by CMAS corrosion in the actual service conditions is still not clear due to the lack of an environmental simulator and nondestructive testing techniques. To solve the above problems, a real-time acoustic emission method combined with infrared thermography are developed to investigate the failure mechanism of TBCs attacked by CMAS corrosion. The results show that the acoustic emission signal spectrum only depends on the failure mode of the TBCs, and five failure modes are identified: surface vertical cracks, sliding interfacial cracks, opening interfacial cracks, substrate deformation and noise. The lifetime of TBCs attacked by CMAS corrosion is 40 thermal shock cycles, which is nearly six times lower than that of TBCs without CMAS corrosion (350 cycles). Conclusions: The failure mechanism of the former is interlaminar cracking and delamination in the ceramic coating; while that for the latter is interfacial delamination in the vicinity of thermal growth oxide.
引用
收藏
页码:775 / 785
页数:11
相关论文
共 46 条
[31]   Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure [J].
Wang, Yi ;
Guo, Hongbo ;
Gong, Shengkai .
CERAMICS INTERNATIONAL, 2009, 35 (07) :2639-2644
[32]   CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage [J].
Wellman, R. ;
Whitman, G. ;
Nicholls, J. R. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (01) :124-132
[33]   A review of the erosion of thermal barrier coatings [J].
Wellman, R. G. ;
Nicholls, J. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (16) :R293-R305
[34]   Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits [J].
Wu, Jing ;
Guo, Hong-bo ;
Gao, Yu-zhi ;
Gong, Sheng-kai .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2011, 31 (10) :1881-1888
[35]   Improved oxidation resistance of NiCrAlY coatings [J].
Wu, YN ;
Qin, M ;
Feng, ZC ;
Liang, Y ;
Sun, C ;
Wang, FH .
MATERIALS LETTERS, 2003, 57 (16-17) :2404-2408
[36]   Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings [J].
Wu, YN ;
Zhang, G ;
Feng, ZC ;
Zhang, BC ;
Liang, Y ;
Liu, FJ .
SURFACE & COATINGS TECHNOLOGY, 2001, 138 (01) :56-60
[37]   Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash [J].
Xia, J. ;
Yang, L. ;
Wu, R. T. ;
Zhou, Y. C. ;
Zhang, L. ;
Huo, K. L. ;
Gan, M. .
APPLIED SURFACE SCIENCE, 2019, 481 :860-871
[38]   Characterization of the strain in the thermal barrier coatings caused by molten CaO-MgO-Al2O3-SiO2 using a digital image correlation technique [J].
Yang, L. ;
Yang, J. ;
Xia, J. ;
Zhu, W. ;
Zhou, Y. C. ;
Wei, Y. G. ;
Wu, R. T. .
SURFACE & COATINGS TECHNOLOGY, 2017, 322 :1-9
[39]   Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion [J].
Yang, L. ;
Yang, T. T. ;
Zhou, Y. C. ;
Wei, Y. G. ;
Wu, R. T. ;
Wang, N. G. .
SURFACE & COATINGS TECHNOLOGY, 2016, 304 :272-282
[40]   Intelligent Discrimination of Failure Modes in Thermal Barrier Coatings: Wavelet Transform and Neural Network Analysis of Acoustic Emission Signals [J].
Yang, L. ;
Kang, H. S. ;
Zhou, Y. C. ;
He, L. M. ;
Lu, C. .
EXPERIMENTAL MECHANICS, 2015, 55 (02) :321-330