Global regularity for a special family of axisymmetric solutions to the three-dimensional magnetic Benard problem

被引:11
作者
Zhang, Zujin [1 ]
Tang, Tong [2 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou, Peoples R China
[2] Hohai Univ, Coll Sci, Dept Math, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Axisymmetric magnetic Benard problem; global regularity;
D O I
10.1080/00036811.2017.1376661
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the three-dimensional magnetic Benard problem, and establish the global regularity for a special family of axisymmetric solutions.
引用
收藏
页码:2533 / 2543
页数:11
相关论文
共 10 条
[1]   On Two-Dimensional Magnetic Benard Problem with Mixed Partial Viscosity [J].
Cheng, Jianfeng ;
Du, Lili .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (04) :769-797
[2]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[3]   On axially symmetric incompressible magnetohydrodynamics in three dimensions [J].
Lei, Zhen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :3202-3215
[4]  
Leonardi S, 1999, Z ANAL ANWEND, V18, P639
[5]  
Lewis J.E., 1966, 1967 SING INT, P218
[6]   On the Global Well-posedness for the Boussinesq System with Horizontal Dissipation [J].
Miao, Changxing ;
Zheng, Xiaoxin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (01) :33-67
[7]   Necessary and sufficient conditions for nonlinear stability in the magnetic Benard problem [J].
Mulone, G ;
Rionero, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (03) :197-218
[8]  
Nakamura M. A., 1991, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V38, P359
[9]  
VONWAHL W, 1982, J LOND MATH SOC, V25, P483
[10]   Global Cauchy problem for a 2D magnetic Benard problem with zero thermal conductivity [J].
Zhou, Yong ;
Fan, Jishan ;
Nakamura, Gen .
APPLIED MATHEMATICS LETTERS, 2013, 26 (06) :627-630