Asymptotic distribution of the zeros of recursively defined non-orthogonal polynomials

被引:1
作者
Heim, Bernhard [1 ]
Neuhauser, Markus [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
[2] Kutaisi Int Univ, Youth Ave,Turn 5-7, GE-4600 Kutaisi, Georgia
关键词
Moments; Polynomials; Recurrence; Zero distribution; COEFFICIENTS;
D O I
10.1016/j.jat.2022.105700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a normalized arithmetic function. We define polynomials Q(n)(g)(x)=x Sigma(n)(k=1) g(k) Q(n-k)(g)(x), Q(0)(g)(x) := 1. It is known that the case g = id involves Chebyshev polynomials of the second kind Q(n)(id)(x) = x Un-1(x/2 +1). In this paper we study the zero distribution of the non-orthogonal polynomials associated ./ with s (n) =n(2). We show that the zeros of Q(n)(s)(x) are real, simple, and are located in (-6 root 3, 0]. Let N-n(a,b) be the number of zeros between -6 root 3 <= a <= b <= 0. Then we determine a density function v(x), such that lim N-n ->infinity(n)(a, b)/n integral(b)(a) = v(x) dx. The polynomials Q(n)(s)(x) satisfy a four-term recursion. We present in detail an analysis of the fundamental roots and give an answer to an open question on recent work by Adams and Tran-Zumba. We extend a method proposed by Freud for orthogonal polynomials to more general systems of polynomials. We determine the underlying moments and density function for the zero distribution. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 29 条
[1]   On hyperbolic polynomials with four-term recurrence and linear coefficients [J].
Adams, Richard .
CALCOLO, 2020, 57 (03)
[2]   On the power series coefficients of certain quotients of Eisenstein series [J].
Berndt, BC ;
Bialek, PR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (11) :4379-4412
[3]   Ramanujan and coefficients of meromorphic modular forms [J].
Bringmann, Kathrin ;
Kane, Ben .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (01) :100-122
[4]  
Chihara T. S., 2011, An Introduction to Orthogonal Polynomials
[5]  
DArcais F., 1913, INTERMEDIAIRE MATH, V20, P233
[6]  
Elaydi S., 2005, INTRO DIFFERENCE EQU, V3rd
[7]  
Freud G., 1971, Orthogonal Polynomials
[9]  
Gessel I., ARXIV141283 60 MATHC
[10]   Lagrange inversion [J].
Gessel, Ira M. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 144 :212-249