Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm

被引:17
作者
Haijes, Hanneke A. [1 ,2 ]
van der Ham, Maria [1 ]
Prinsen, Hubertus C. M. T. [1 ]
Broeks, Melissa H. [1 ]
van Hasselt, Peter M. [2 ]
de Sain-van der Velden, Monique G. M. [1 ]
Verhoeven-Duif, Nanda M. [1 ]
Jans, Judith J. M. [1 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Dept Genet, Sect Metab Diagnost, Lundlaan 6, NL-3584 EA Utrecht, Netherlands
[2] Univ Utrecht, Univ Med Ctr Utrecht, Wilhelmina Childrens Hosp, Sect Metab Diagnost,Dept Child Hlth, Lundlaan 6, NL-3584 EA Utrecht, Netherlands
关键词
untargeted metabolomics; inborn errors of metabolism; IEM; direct-infusion high-resolution mass spectrometry; automated data interpretation; next generation metabolic screening; diagnostics;
D O I
10.3390/ijms21030979
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Untargeted metabolomics may become a standard approach to address diagnostic requests, but, at present, data interpretation is very labor-intensive. To facilitate its implementation in metabolic diagnostic screening, we developed a method for automated data interpretation that preselects the most likely inborn errors of metabolism (IEM). The input parameters of the knowledge-based algorithm were (1) weight scores assigned to 268 unique metabolites for 119 different IEM based on literature and expert opinion, and (2) metabolite Z-scores and ranks based on direct-infusion high resolution mass spectrometry. The output was a ranked list of differential diagnoses (DD) per sample. The algorithm was first optimized using a training set of 110 dried blood spots (DBS) comprising 23 different IEM and 86 plasma samples comprising 21 different IEM. Further optimization was performed using a set of 96 DBS consisting of 53 different IEM. The diagnostic value was validated in a set of 115 plasma samples, which included 58 different IEM and resulted in the correct diagnosis being included in the DD of 72% of the samples, comprising 44 different IEM. The median length of the DD was 10 IEM, and the correct diagnosis ranked first in 37% of the samples. Here, we demonstrate the accuracy of the diagnostic algorithm in preselecting the most likely IEM, based on the untargeted metabolomics of a single sample. We show, as a proof of principle, that automated data interpretation has the potential to facilitate the implementation of untargeted metabolomics for metabolic diagnostic screening, and we provide suggestions for further optimization of the algorithm to improve diagnostic accuracy.
引用
收藏
页数:12
相关论文
共 13 条
[1]   N8-acetylspermidine as a potential plasma biomarker for Snyder-Robinson syndrome identified by clinical metabolomics [J].
Abela, Lucia ;
Simmons, Luke ;
Steindl, Katharina ;
Schmitt, Bernhard ;
Mastrangelo, Massimo ;
Joset, Pascal ;
Papuc, Mihaela ;
Sticht, Heinrich ;
Baumer, Alessandra ;
Crowther, Lisa M. ;
Mathis, Deborah ;
Rauch, Anita ;
Plecko, Barbara .
JOURNAL OF INHERITED METABOLIC DISEASE, 2016, 39 (01) :131-137
[2]   Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data [J].
Aitken, Stuart ;
Firth, Helen V. ;
McRae, Jeremy ;
Halachev, Mihail ;
Kini, Usha ;
Parker, Michael J. ;
Lees, Melissa M. ;
Lachlan, Katherine ;
Sarkar, Ajoy ;
Joss, Shelagh ;
Splitt, Miranda ;
McKee, Shane ;
Nemeth, Andrea H. ;
Scott, Richard H. ;
Wright, Caroline F. ;
Marsh, Joseph A. ;
Hurles, Matthew E. ;
FitzPatrick, David R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2019, 105 (05) :933-946
[3]   Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders [J].
Burrage, Lindsay C. ;
Thistlethwaite, Lillian ;
Stroup, Bridget M. ;
Sun, Qin ;
Miller, Marcus J. ;
Nagamani, Sandesh C. S. ;
Craigen, William ;
Scaglia, Fernando ;
Sutton, V. Reid ;
Graham, Brett ;
Kennedy, Adam D. ;
Milosavljevic, Aleksandar ;
Lee, Brendan H. ;
Elsea, Sarah H. .
GENETICS IN MEDICINE, 2019, 21 (09) :1977-1986
[4]   Next-generation metabolic screening: targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients [J].
Coene, Karlien L. M. ;
Kluijtmans, Leo A. J. ;
van der Heeft, Ed ;
Engelke, Udo F. H. ;
de Boer, Siebolt ;
Hoegen, Brechtje ;
Kwast, Hanneke J. T. ;
van de Vorst, Maartje ;
Huigen, Marleen C. D. G. ;
Keularts, Irene M. L. W. ;
Schreuder, Michiel F. ;
van Karnebeek, Clara D. M. ;
Wortmann, Saskia B. ;
de Vries, Maaike C. ;
Janssen, Mirian C. H. ;
Gilissen, Christian ;
Engel, Jasper ;
Wevers, Ron A. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2018, 41 (03) :337-353
[5]   A proposed nosology of inborn errors of metabolism [J].
Ferreira, Carlos R. ;
van Karnebeek, Clara D. M. ;
Vockley, Jerry ;
Blau, Nenad .
GENETICS IN MEDICINE, 2019, 21 (01) :102-106
[6]   Development of a metabolomic approach based on urine samples and direct infusion mass spectrometry [J].
Gonzalez-Dominguez, Raill ;
Castilla-Quintero, Rocio ;
Garcia-Barrera, Tamara ;
Luis Gomez-Ariza, Jose .
ANALYTICAL BIOCHEMISTRY, 2014, 465 :20-27
[7]   Aspartylglycosamine is a biomarker for NGLY1-CDDG, a congenital disorder of deglycosylation [J].
Haijes, Hanneke A. ;
de Sain-van der Velden, Monique G. M. ;
Prinsen, Hubertus C. M. T. ;
Willems, Anke P. ;
van der Ham, Maria ;
Gerrits, Johan ;
Couse, Madeline H. ;
Friedman, Jan M. ;
van Karnebeek, Clara D. M. ;
Selby, Kathryn A. ;
van Hasselt, Peter M. ;
Verhoeven-Duif, Nanda M. ;
Jans, Judith J. M. .
MOLECULAR GENETICS AND METABOLISM, 2019, 127 (04) :368-372
[8]   Direct-infusion based metabolomics unveils biochemical profiles of inborn errors of metabolism in cerebrospinal fluid [J].
Haijes, Hanneke A. ;
van der Ham, Maria ;
Gerrits, Johan ;
van Hasselt, Peter M. ;
Prinsen, Hubertus C. M. T. ;
de Sain-van der Velden, Monique G. M. ;
Verhoeven-Duif, Nanda M. ;
Jansa, Judith J. M. .
MOLECULAR GENETICS AND METABOLISM, 2019, 127 (01) :51-57
[9]   Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients' Dried Blood Spots and Plasma [J].
Haijes, Hanneke A. ;
Willemsen, Marcel ;
van der Ham, Maria ;
Gerrits, Johan ;
Pras-Raves, Mia L. ;
Prinsen, Hubertus C. M. T. ;
van Hasselt, Peter M. ;
de Sain-van der Velden, Monique G. M. ;
Verhoeven-Duif, Nanda M. ;
Jans, Judith J. M. .
METABOLITES, 2019, 9 (01)
[10]   2-Pyrrolidinone and Succinimide as Clinical Screening Biomarkers for GABA-Transaminase Deficiency: Anti-seizure Medications Impact Accurate Diagnosis [J].
Kennedy, Adam D. ;
Pappan, Kirk L. ;
Donti, Taraka ;
Delgado, Mauricio R. ;
Shinawi, Marwan ;
Pearson, Toni S. ;
Lalani, Seema R. ;
Craigen, William E. ;
Sutton, V. Reid ;
Evans, Anne M. ;
Sun, Qin ;
Emrick, Lisa T. ;
Elsea, Sarah H. .
FRONTIERS IN NEUROSCIENCE, 2019, 13