Convergence of a Singular Euler-Maxwell Approximation of the Incompressible Euler Equations

被引:2
作者
Yang, Jianwei [1 ]
Wang, Hongli [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
基金
美国国家科学基金会;
关键词
QUASI-NEUTRAL LIMIT; POISSON SYSTEM; MODEL;
D O I
10.1155/2011/942024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the Euler-Maxwell system which is a model of a collisionless plasma. By energy estimation and the curl-div decomposition of the gradient, we rigorously justify a singular approximation of the incompressible Euler equations via a quasi-neutral regime.
引用
收藏
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[2]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[3]  
BREZIS H, 1995, CR ACAD SCI I-MATH, V321, P953
[4]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[5]   Quasineutral limit of an Euler-Poisson system arising from plasma physics [J].
Cordier, S ;
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :1099-1113
[6]   An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit [J].
Crispel, Pierre ;
Degond, Pierre ;
Vignal, Marie-Helene .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) :208-234
[7]  
Grenier E, 1997, COMMUN PUR APPL MATH, V50, P821, DOI 10.1002/(SICI)1097-0312(199709)50:9<821::AID-CPA2>3.0.CO
[8]  
2-7
[9]   The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors [J].
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (01) :111-133
[10]  
Jerome JW., 2003, Diff Integral Equ, V16, P1345