Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method

被引:39
作者
Dong, Yu-Hong [1 ,2 ]
Sagaut, Pierre [1 ]
Marie, Simon [1 ,3 ]
机构
[1] Univ Paris 06, Inst Jean Le Rond Alembert, F-75252 Paris 5, France
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
[3] TCR AVA 163, Technoctr Renault, F-78288 Guyancourt, France
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2842379
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The recently introduced inertial-range (IR) consistent Smagorinsky model and the classical Smagorinsky model are applied to the large-eddy simulation (LES) of decaying homogeneous isotropic turbulence based on the lattice Boltzmann method (LBM), which is implemented using the 19-velocity D3Q19 lattice model. The objectives of this study are to examine the effectiveness of the LES-LBM technique for study of turbulence and to extend and validate the efficiency of the inertial-range consistent Smagorinsky model for lattice Boltzmann fluid dynamics. The LES-LBM results are compared with the direct numerical simulation data as well as experimental data. The time evolution of the kinetic energy and the decay exponents of the dissipation rate, the velocity derivative skewness, and instantaneous energy spectra are analyzed. The dependency of behavior of the model coefficients on the ratio of grid width Delta and the Kolmogorov scale eta is examined numerically. The results demonstrate that the LES-LBM in conjunction with the IR consistent Smagorinsky model can be used to simulate turbulence more satisfactorily than the standard Smagorinsky model. (c) 2008 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 48 条
[11]   Lattice-Boltzmann simulation of grid-generated turbulence [J].
Djenidi, L .
JOURNAL OF FLUID MECHANICS, 2006, 552 (13-35) :13-35
[12]   Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme [J].
Eggels, JGM .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1996, 17 (03) :307-323
[13]   THE DECAY OF HOMOGENEOUS ISOTROPIC TURBULENCE [J].
GEORGE, WK .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (07) :1492-1509
[14]   A DYNAMIC SUBGRID-SCALE EDDY VISCOSITY MODEL [J].
GERMANO, M ;
PIOMELLI, U ;
MOIN, P ;
CABOT, WH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (07) :1760-1765
[15]   Boltzmann kinetic equation for filtered fluid turbulence [J].
Girimaji, Sharath S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (03)
[16]  
Hou S., 1996, Fields Institute Communications, V6, P151, DOI [10.48550/arXiv.comp-gas/9401004, DOI 10.48550/ARXIV.COMP-GAS/9401004]
[17]   Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation [J].
Kang, HS ;
Chester, S ;
Meneveau, C .
JOURNAL OF FLUID MECHANICS, 2003, 480 :129-160
[18]  
Kolmogoroff AN, 1941, CR ACAD SCI URSS, V32, P16
[19]   Large-eddy simulations with a multiple-relaxation-time LBE model [J].
Krafczyk, M ;
Tölke, J ;
Luo, LS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2) :33-39
[20]   Effect of initial conditions on decaying grid turbulence at low Rℷ [J].
Lavoie, P ;
Burattini, P ;
Djenidi, L ;
Antonia, RA .
EXPERIMENTS IN FLUIDS, 2005, 39 (05) :865-874