Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica:: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes

被引:207
作者
Penuelas, Josep [1 ]
Hunt, Jenny M. [1 ]
Ogaya, Roma [1 ]
Jump, Alistair S. [1 ]
机构
[1] Univ Autonoma Barcelona, CREAF CEAB CSIC, Unitat Ecofisiol & Canvi Global, E-08193 Barcelona, Spain
关键词
delta(13) C; basal area increment; climate change; CO2; drought; European beech; Fagus sylvatica; geographical range; Mediterranean; range edge;
D O I
10.1111/j.1365-2486.2008.01563.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
We aimed to gain knowledge on the changes in intrinsic water use efficiency (iWUE) in response to increasing atmospheric CO2 concentrations and climate change over the last century. We investigated the variation in the iWUE of mature Fagus sylvatica trees located in the higher, central and lower altitudinal forest limits (HFL, CFA and LFL) of one of the southernmost sites of beech distribution in Europe, the Montseny Mountains in Catalonia (northeast Spain), during the last century by analysing the delta C-13 of their tree rings. Pre- and post-maturation phases of the trees presented different trends in delta C-13, Delta C-13, Ci (internal CO2 concentration), iWUE and basal area increment (BAI). Moreover, these variables showed different trends and absolute values in the LFL than in the other altitudinal sites, CFA and HFL. Our results show the existence of an age effect on delta C-13 in the CFA and HFL (values increased by ca. 1.25 parts per thousand coinciding with the BAI suppression and release phases, previous to maturation). These age-related changes were not found in the LFL, whose beech trees arrived to maturation earlier and experienced drier conditions during the suppression phase. In the last 26 years of comparable mature trees, the increase of iWUE deduced from the Delta C-13 analyses was ca. 10% in LFL, ca. 6% in CFA and not significant in HFL. These results show that climate change towards more arid conditions accounted for these higher Delta C-13-values and increases in the LFL more than the continuous increase in atmospheric CO2 concentrations. This increased iWUE in the LFL did not avoid a decline in growth in these lowest altitudes of this beech southern range-edge as a result of warming. Furthermore, since there was no apparent change in iWUE and growth in the beech forests growing in the more standard-adequate environments of higher altitudes in the last 26 years, the rate of sequestration of C into temperate ecosystems may not increase with increasing atmospheric CO2 concentrations as predicted by most models based on short-term small scale experiments.
引用
收藏
页码:1076 / 1088
页数:13
相关论文
共 73 条
[41]   Homeostatic gas-exchange parameters inferred from C-13/C-12 in tree rings of conifers [J].
Marshall, JD ;
Monserud, RA .
OECOLOGIA, 1996, 105 (01) :13-21
[42]   Stable isotopes in tree rings [J].
McCarroll, D ;
Loader, NJ .
QUATERNARY SCIENCE REVIEWS, 2004, 23 (7-8) :771-801
[43]  
Melillo JM, 1995, CLIMATE CHANGE 1995: THE SCIENCE OF CLIMATE CHANGE, P445
[44]   RESPONSE OF PLANTS TO CO2 UNDER WATER LIMITED CONDITIONS [J].
MORISON, JIL .
VEGETATIO, 1993, 104 :193-209
[45]   The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains [J].
Muzika, RM ;
Guyette, RP ;
Zielonka, T ;
Liebhold, AM .
ENVIRONMENTAL POLLUTION, 2004, 130 (01) :65-71
[46]   CARBON ISOTOPE FRACTIONATION IN PLANTS [J].
OLEARY, MH .
PHYTOCHEMISTRY, 1981, 20 (04) :553-567
[47]  
Osmond C.B., 1980, PHYSL PROCESSES PLAN
[48]   EVAPOTRANSPIRATION OF BEECH STANDS AND TRANSPIRATION OF BEECH LEAVES SUBJECT TO ATMOSPHERIC CO2 ENRICHMENT [J].
OVERDIECK, D ;
FORSTREUTER, M .
TREE PHYSIOLOGY, 1994, 14 (7-9) :997-1003
[49]  
PAOLETTI E, 1993, ACTA OECOL, V14, P173
[50]  
Pedersen BS, 1998, ECOLOGY, V79, P79, DOI 10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO