Quantum phase transition between cluster and antiferromagnetic states

被引:98
|
作者
Son, W. [1 ]
Amico, L. [2 ,3 ]
Fazio, R. [1 ,4 ,5 ]
Hamma, A. [6 ]
Pascazio, S. [7 ,8 ,9 ]
Vedral, V. [1 ,10 ,11 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117542, Singapore
[2] Univ Catania, CNR MATIS IMM, I-95125 Catania, Italy
[3] Univ Catania, Dipartimento Fis & Astron, I-95125 Catania, Italy
[4] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[5] CNR INFM, I-56126 Pisa, Italy
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[7] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[8] Univ Bari, MECENAS, I-70126 Bari, Italy
[9] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[10] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[11] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
ENTANGLEMENT;
D O I
10.1209/0295-5075/95/50001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a Hamiltonian system describing a three-spin-1/2 cluster-like interaction competing with an Ising-like exchange. We show that the ground state in the cluster phase possesses symmetry protected topological order. A continuous quantum phase transition occurs as result of the competition between the cluster and Ising terms. At the critical point the Hamiltonian is self-dual. The geometric entanglement is also studied and used to investigate the quantum phase transition. Our findings in one dimension corroborate the analysis of the two-dimensional generalization of the system, indicating, at a mean-field level, the presence of a direct transition between an antiferromagnetic and a valence bond solid ground state. Copyright (C) EPLA, 2011
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Universality of quantum computation with cluster states and (X, Y)-plane measurements
    Mantri, Atul
    Demarie, Tommaso F.
    Fitzsimons, Joseph F.
    SCIENTIFIC REPORTS, 2017, 7
  • [42] Quantum simultaneous secret distribution with dense coding by using cluster states
    Liu, Zhihao
    Chen, Hanwu
    Liu, Wenjie
    Xu, Juan
    QUANTUM INFORMATION PROCESSING, 2013, 12 (12) : 3745 - 3759
  • [43] Negativity and quantum phase transition in the anisotropic XXZ model
    Song, Xue-ke
    Wu, Tao
    Ye, Liu
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (05)
  • [44] Renormalization of magic and quantum phase transition in spin models
    He, Jiayu
    Fu, Shuangshuang
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [45] Dynamical Purification Phase Transition Induced by Quantum Measurements
    Gullans, Michael J.
    Huse, David A.
    PHYSICAL REVIEW X, 2020, 10 (04):
  • [46] Quantum phase transition and entanglement in Li atom system
    Si LiMing
    Hou JiXuan
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2008, 51 (11): : 1677 - 1681
  • [47] Level crossing and quantum phase transition of the XY ring
    Jing, Jun
    Ma, H. R.
    MODERN PHYSICS LETTERS B, 2008, 22 (08): : 535 - 546
  • [48] Quantum phase transition and entanglement in Li atom system
    LiMing Si
    JiXuan Hou
    Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51 : 1677 - 1681
  • [49] Quantum phase transition in an array of coupled dissipative cavities
    Liu, Ke
    Tan, Lei
    Lv, Chun-Hai
    Liu, Wu-Ming
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [50] Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion
    Cai, M. -L.
    Liu, Z. -D.
    Zhao, W. -D.
    Wu, Y. -K.
    Mei, Q. -X.
    Jiang, Y.
    He, L.
    Zhang, X.
    Zhou, Z. -C.
    Duan, L. -M.
    NATURE COMMUNICATIONS, 2021, 12 (01)