Large annihilators in Cayley-Dickson algebras

被引:14
作者
Biss, Daniel K. [1 ]
Dugger, Daniel [2 ]
Isaksen, Daniel C. [3 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
Cayley-Dickson algebra; nonassociative algebra; zero-divisor;
D O I
10.1080/00927870701724094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cayley-Dickson algebras are nonassociative R-algebras that generalize the well-known algebras R, C, H, and O. We study zero-divisors in these algebras. In particular, we show that the annihilator of any element of the 2(n)-dimensional Cayley-Dickson algebra has dimension at most 2(n) - 4n + 4. Moreover, every multiple of 4 between 0 and this upper bound occurs as the dimension of some annihilator. Although a complete description of zero-divisors seems to be out of reach, we can describe precisely the elements whose annihilators have dimension 2(n) - 4n + 4.
引用
收藏
页码:632 / 664
页数:33
相关论文
共 13 条