Least squares and genetic algorithms for parameter identification of induction motors

被引:39
|
作者
Alonge, F [1 ]
D'Ippolito, F [1 ]
Raimondi, FM [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn Automat & Informat, Fac Engn, I-90128 Palermo, Italy
关键词
induction motors; parameter identification; least squares; genetic algorithms;
D O I
10.1016/S0967-0661(01)00024-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with off-line parameter identification of induction motors by means of least square (LS) techniques and genetic algorithms (GA), using stator voltages, stator currents and velocity as input-output data. For analytical identification by LS algorithms, filtering of experimental data is performed by means of anticausal filters. Two models useful for identification are derived in which the products of acceleration and rotor fluxes, usually neglected, are taken into account. The GA-based identification method consists of the determination of the best parameters which match input-output behaviour of the motor. Both methods are investigated and compared by means of experiments carried out on a 1-kW induction motor. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:647 / 657
页数:11
相关论文
共 50 条
  • [1] Parameter identification of induction motors: Least squares vs. genetic algorithms
    Alonge, F
    D'Ippolito, F
    Raimondi, FM
    MOTION CONTROL (MC'98), 1999, : 341 - 346
  • [2] LEAST-SQUARES ALGORITHMS FOR SYSTEM PARAMETER IDENTIFICATION
    HSIA, TC
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (01) : 104 - 108
  • [3] Parameter identification for FOC induction motors using genetic algorithms with improved mathematical model
    Huang, KS
    Kent, W
    Wu, QH
    Turner, DR
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2001, 29 (03) : 247 - 258
  • [4] Parameter identification of induction motors using stochastic optimization algorithms
    Ursem, RK
    Vadstrup, P
    APPLIED SOFT COMPUTING, 2004, 4 (01) : 49 - 64
  • [5] Parameter Identification of Induction Motors using Variable-weighted Cost Function of Genetic Algorithms
    Megherbi, A. C.
    Megherbi, H.
    Benmahamed, K.
    Aissaoui, A. G.
    Tahour, A.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2010, 5 (04) : 597 - 605
  • [6] Comparison of three intelligent optimization algorithms for parameter identification of induction motors
    Chen, Zhen-Feng
    Zhong, Yan-Ru
    Li, Jie
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2010, 14 (11): : 7 - 12
  • [7] Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter
    Marino, P
    Mungiguerra, V
    Russo, F
    Vasca, F
    PESC 96 RECORD - 27TH ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS I AND II, 1996, : 1235 - 1241
  • [8] Parameter identification of a mathematical model of induction motors via least square technics
    Alonge, F
    D'Ippolito, F
    La Barbera, S
    Raimondi, FM
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 1996, : 491 - 496
  • [9] Parameter subset identification by recursive least squares
    Pizarro, O
    Sbarbaro, D
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3590 - 3591
  • [10] THE APPLICATION OF THE LEAST SQUARES METHOD TO PARAMETER IDENTIFICATION
    Cong Shuping
    Han Jinsheng
    Sun Xiuli
    Liang Shuting
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INSPECTION APPRAISAL REPAIRS AND MAINTENANCE OF STRUCTURES, VOLS 1 AND 2, 2010, : 269 - +