Compactly supported frames for spaces of distributions associated with nonnegative self-adjoint operators

被引:11
|
作者
Dekel, S.
Kerkyacharian, G. [1 ,2 ]
Kyriazis, G. [3 ]
Petrushev, P. [4 ]
机构
[1] Univ Paris 06, CNRS UMR 7599, Lab Probabilites & Modeles Aleatoires, F-75013 Paris, France
[2] Univ Paris 07, F-75013 Paris, France
[3] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[4] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
heat kernel; frames; Besov spaces; Triebel-Lizorkin spaces; Hardy spaces; WEIGHTED TRIEBEL-LIZORKIN; BESOV; DECOMPOSITION; BASES;
D O I
10.4064/sm225-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A small perturbation method is developed and employed to construct frames with compactly supported elements of small shrinking support for Besov and Triebel-Lizorkin spaces in the general setting of a doubling metric measure space in the presence of a nonnegative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. This allows one, in particular, to construct compactly supported frames for Besov and Triebel Lizorkin spaces on the sphere, on the interval with Jacobi weights as well as on Lie groups, Riemannian manifolds, and in various other settings. The compactly supported frames are utilized to introduce atomic Hardy spaces H-A(p) in the general setting of this article.
引用
收藏
页码:115 / 163
页数:49
相关论文
共 32 条
  • [21] Local Hardy Spaces with Variable Exponents Associated with Non-negative Self-Adjoint Operators Satisfying Gaussian Estimates
    Víctor Almeida
    Jorge J. Betancor
    Estefanía Dalmasso
    Lourdes Rodríguez-Mesa
    The Journal of Geometric Analysis, 2020, 30 : 3275 - 3330
  • [22] Local Hardy Spaces with Variable Exponents Associated with Non-negative Self-Adjoint Operators Satisfying Gaussian Estimates
    Almeida, Victor
    Betancor, Jorge J.
    Dalmasso, Estefania
    Rodriguez-Mesa, Lourdes
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 3275 - 3330
  • [23] Perturbations of self-adjoint and normal operators with discrete spectrum
    Shkalikov, A. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (05) : 907 - 964
  • [24] Diagonals of self-adjoint operators II: non-compact operators
    Bownik, Marcin
    Jasper, John
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 431 - 507
  • [25] Weighted Lp estimates for the area integral associated with self-adjoint operators on homogeneous space
    Gong, Ruming
    Xie, Peizhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 590 - 604
  • [26] SHARP SPECTRAL MULTIPLIERS FOR HARDY SPACES ASSOCIATED TO NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING DAVIES-GAFFNEY ESTIMATES
    Chen, Peng
    COLLOQUIUM MATHEMATICUM, 2013, 133 (01) : 51 - 65
  • [27] Hardy spaces H1 for Schrodinger operators with compactly supported potentials
    Dziubanski, Jacek
    Zienkiewicz, Jacek
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) : 315 - 326
  • [28] Maximal function characterizations of Hardy spaces associated with both non-negative self-adjoint operators satisfying Gaussian estimates and ball quasi-Banach function spaces
    Lin, Xiaosheng
    Yang, Dachun
    Yang, Sibei
    Yuan, Wen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 484 - 514
  • [29] Hardy spaces H1 for Schrödinger operators with compactly supported potentials
    Jacek Dziubański
    Jacek Zienkiewicz
    Annali di Matematica Pura ed Applicata (1923 -), 2005, 184 : 315 - 326
  • [30] VARIABLE INTEGRAL AND SMOOTH EXPONENT TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH A NON-NEGATIVE SELF-ADJOINT OPERATOR
    Xu, Jingshi
    Yang, Xiaodi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 405 - 426