Generalized virial theorem for the Li,nard-type systems

被引:3
作者
Carinena, Jose F. [1 ]
Choudhury, Anindya Ghose [2 ]
Guha, Partha [3 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Surendranath Coll, Dept Phys, Kolkata 700009, India
[3] SN Bose Natl Ctr Basic Sci, Kolkata 700098, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 84卷 / 03期
关键词
Virial theorem; Lienard-type equation; Jacobi last multiplier; symplectic form; Banach manifold; HENON-HEILES SYSTEM; OSCILLATOR;
D O I
10.1007/s12043-014-0925-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometrical description of the virial theorem (VT) of statistical mechanics is presented using the symplectic formalism. The character of the Clausius virial function is determined for second-order differential equations of the Li,nard type. The explicit dependence of the virial function on the Jacobi last multiplier is illustrated. The latter displays a dual role, namely, as a position-dependent mass term and as an appropriate measure in the geometrical context.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 2003, COURANT LECT NOTES M
[2]   One-dimensional model of a quantum nonlinear harmonic oscillator [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) :285-293
[3]   A geometric approach to a generalized virial theorem [J].
Carinena, Jose F. ;
Falceto, Fernando ;
Ranada, Manuel F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (39)
[4]   Quantization of the Lienard II equation and Jacobi's last multiplier [J].
Choudhury, A. Ghose ;
Guha, Partha .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (16)
[5]   On isochronous cases of the Cherkas system and Jacobi's last multiplier [J].
Choudhury, A. Ghose ;
Guha, Partha .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (12)
[6]  
Clausius R., 1870, London, Edinburgh, Dublin Philosoph. Magaz. J. Sci., V40, P122, DOI DOI 10.1080/14786447008640370
[7]  
Collins G.W., 1978, The Virial Theorem in Stellar Astrophysics
[8]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[9]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[10]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113