Platinum group metal-free Fe-based (Fe-N-C) oxygen reduction electrocatalysts for direct alcohol fuel cells

被引:26
作者
Berretti, Enrico [1 ]
Longhi, Mariangela [2 ]
Atanassov, Plamen [3 ]
Sebastian, David [4 ]
Lo Vecchio, Carmelo [5 ]
Baglio, Vincenzo [5 ]
Serov, Alexey [6 ]
Marchionni, Andrea [1 ]
Vizza, Francesco [1 ]
Santoro, Carlo [7 ]
Lavacchi, Alessandro [1 ]
机构
[1] CNR, Ist Chim Composti Organomet ICCOM, Via Madonna Piano 10, I-50019 Florence, Italy
[2] Univ Milan, Dipartimento Chim, Via Golgi 19, I-20133 Milan, Italy
[3] Univ Calif Irvine, Natl Fuel Cells Res Ctr, Dept Chem & Biomol Engn, Irvine, CA 92697 USA
[4] CSIC, Inst Carboquim, C Miguel Luesma Castan 4, Zaragoza 50018, Spain
[5] CNR, ITAE, Ist Tecnol Avanzate Energia Nicola Giordano, Via Salita S Lucia 5, I-98126 Messina, Italy
[6] Pajarito Powder LLC, 3600 Osuna Rd NE,Ste 309, Albuquerque, NM 87109 USA
[7] Univ Milano Bicocca, Dept Mat Sci, U5 Via Cozzi 55, I-20125 Milan, Italy
关键词
Direct alcohol fuel cell; Platinum group metal-free catalysts; Cathode; Alcohol tolerance; HIGH-PERFORMANCE; METHANOL CROSSOVER; CATHODE CATALYSTS; IRON; TOLERANCE;
D O I
10.1016/j.coelec.2021.100756
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In direct alcohol fuel cells (DAFCs), the oxidation of alcohols happens at the expenses of the oxygen reduction reaction at the cathode. DAFCs' cathodes use a significant amount of platinum that is an expensive critical raw material. Moreover, platinum oxidizes alcohols, a fact that combined with alcohol crossover, decreases significantly the performance of the cells. The use of Fe-based (Fe-N-C) platinum group metal-free (PGM-free) cathodes is a convenient strategy to overcome these limitations. This review analyzes the application of PGM-free cathodes to DAFCs. The discussion focuses on acidic systems and covers the following subjects: (i) the breakdown of DAFC potential in its components, (ii) the analysis of the advantages from the use of the PGM-free cathode, and (iii) a review of the performance and durability of DAFCs. The review closes with a view of the authors of the future perspective for the research.
引用
收藏
页数:11
相关论文
共 51 条
[1]   Carbon-neutral sustainable energy technology: Direct ethanol fuel cells [J].
An, L. ;
Zhao, T. S. ;
Li, Y. S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 :1462-1468
[2]  
Arico A.S., 2009, ELECTROCATALYSIS DIR, P1, DOI [10.1002/9783527627707.ch1, DOI 10.1002/9783527627707.CH1]
[3]   Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells [J].
Asset, Tristan ;
Atanassov, Plamen .
JOULE, 2020, 4 (01) :33-44
[4]   Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests [J].
Casalegno, A. ;
Bresciani, F. ;
Zago, M. ;
Marchesi, R. .
JOURNAL OF POWER SOURCES, 2014, 249 :103-109
[5]   Low methanol crossover and high efficiency direct methanol fuel cell: The influence of diffusion layers [J].
Casalegno, A. ;
Santoro, C. ;
Rinaldi, F. ;
Marchesi, R. .
JOURNAL OF POWER SOURCES, 2011, 196 (05) :2669-2675
[6]   Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes [J].
Chisaka, Mitsuharu ;
Ishihara, Akimitsu ;
Morioka, Hiroyuki ;
Nagai, Takaaki ;
Yin, Shihong ;
Ohgi, Yoshiro ;
Matsuzawa, Koichi ;
Mitsushima, Shigenori ;
Ota, Ken-ichiro .
ACS OMEGA, 2017, 2 (02) :678-684
[7]   Origins, Developments, and Perspectives of Carbon Nitride-Based Electrocatalysts for Application in Low-Temperature FCs [J].
Di Noto, Vito ;
Negro, Enrico ;
Vezzu, Keti ;
Bertasi, Federico ;
Nawn, Graeme .
ELECTROCHEMICAL SOCIETY INTERFACE, 2015, 24 (02) :59-63
[8]  
Jahnke H, 1976, Top Curr Chem, V61, P133
[9]   NEW FUEL CELL CATHODE CATALYST [J].
JASINSKI, R .
NATURE, 1964, 201 (492) :1212-&
[10]   An overview on non-platinum cathode catalysts for direct methanol fuel cell [J].
Karim, N. A. ;
Kamarudin, S. K. .
APPLIED ENERGY, 2013, 103 :212-220