Spectral Property of Self-Affine Measures on Rn

被引:0
作者
Wang, Zhiyong [1 ]
Liu, Jingcheng [2 ]
Su, Juan [3 ]
机构
[1] Hunan First Normal Univ, Coll Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
关键词
Self-affine; Spectral measure; Spectrum; Fourier transform;
D O I
10.1007/s00041-021-09883-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any integer m > 1, let D subset of Z(n) be a finite digit set such that Z(mD) = boolean OR(k)(i=1) Z(i) for some finite integer k, (Z(i)-Z(i))\Z(n) subset of Z(i) subset of (m(-1)Z\Z)(n) and Z(i) not subset of (m'(-1) Z\Z)(n) for all 0 < m' < m, where Z(m(D)) = {x : Sigma(d is an element of D) e(2 pi,i(d,x)) = 0}. Let M = diag[b(1),.....,b(n)] be a real expansive diagonal matrix and mu(M,D) be the self-affine measure on Rn defined by mu M, D(.) = 1/vertical bar D vertical bar Sigma(d is an element of D) mu(M,D) (M(.) - d). In this paper, we first give the sufficient and necessary condition for L-2(mu(M,D)) to contain an infinite orthogonal exponentials for any integer m > 1. Furthermore, we show that, if m is a prime, mu(M,D) is a spectral measure if and only if m vertical bar b(i), i = 1, 2,..., n. This extends known results in [5,6,28].
引用
收藏
页数:28
相关论文
共 28 条
[11]   HADAMARD TRIPLES GENERATE SELF-AFFINE SPECTRAL MEASURES [J].
Dutkay, Dorin Ervin ;
Haussermann, John ;
Lai, Chun-Kit .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) :1439-1481
[12]   On the spectra of a Cantor measure [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :251-276
[13]  
Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X
[14]   Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures [J].
He, Xing-Gang ;
Tang, Min-wei ;
Wu, Zhi-Yi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (10) :3688-3722
[15]   Spectral property of the Bernoulli convolutions [J].
Hu, Tian-You ;
Lau, Ka-Sing .
ADVANCES IN MATHEMATICS, 2008, 219 (02) :554-567
[16]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[17]   Dense analytic subspaces in fractal L2-spaces [J].
Jorgensen, PET ;
Pedersen, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 75 (1) :185-228
[18]   Tiles with no spectra [J].
Kolountzakis, Mihail N. ;
Matolcsi, Mate .
FORUM MATHEMATICUM, 2006, 18 (03) :519-528
[19]   On spectral Cantor measures [J].
Laba, I ;
Wang, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (02) :409-420
[20]   Tiling the line with translates of one tile [J].
Lagarias, JC ;
Wang, Y .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :341-365