共 28 条
Spectral Property of Self-Affine Measures on Rn
被引:0
作者:
Wang, Zhiyong
[1
]
Liu, Jingcheng
[2
]
Su, Juan
[3
]
机构:
[1] Hunan First Normal Univ, Coll Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
关键词:
Self-affine;
Spectral measure;
Spectrum;
Fourier transform;
D O I:
10.1007/s00041-021-09883-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For any integer m > 1, let D subset of Z(n) be a finite digit set such that Z(mD) = boolean OR(k)(i=1) Z(i) for some finite integer k, (Z(i)-Z(i))\Z(n) subset of Z(i) subset of (m(-1)Z\Z)(n) and Z(i) not subset of (m'(-1) Z\Z)(n) for all 0 < m' < m, where Z(m(D)) = {x : Sigma(d is an element of D) e(2 pi,i(d,x)) = 0}. Let M = diag[b(1),.....,b(n)] be a real expansive diagonal matrix and mu(M,D) be the self-affine measure on Rn defined by mu M, D(.) = 1/vertical bar D vertical bar Sigma(d is an element of D) mu(M,D) (M(.) - d). In this paper, we first give the sufficient and necessary condition for L-2(mu(M,D)) to contain an infinite orthogonal exponentials for any integer m > 1. Furthermore, we show that, if m is a prime, mu(M,D) is a spectral measure if and only if m vertical bar b(i), i = 1, 2,..., n. This extends known results in [5,6,28].
引用
收藏
页数:28
相关论文