Spectral Property of Self-Affine Measures on Rn

被引:0
作者
Wang, Zhiyong [1 ]
Liu, Jingcheng [2 ]
Su, Juan [3 ]
机构
[1] Hunan First Normal Univ, Coll Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Math Modeling & Anal Engn, Changsha 410114, Hunan, Peoples R China
关键词
Self-affine; Spectral measure; Spectrum; Fourier transform;
D O I
10.1007/s00041-021-09883-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any integer m > 1, let D subset of Z(n) be a finite digit set such that Z(mD) = boolean OR(k)(i=1) Z(i) for some finite integer k, (Z(i)-Z(i))\Z(n) subset of Z(i) subset of (m(-1)Z\Z)(n) and Z(i) not subset of (m'(-1) Z\Z)(n) for all 0 < m' < m, where Z(m(D)) = {x : Sigma(d is an element of D) e(2 pi,i(d,x)) = 0}. Let M = diag[b(1),.....,b(n)] be a real expansive diagonal matrix and mu(M,D) be the self-affine measure on Rn defined by mu M, D(.) = 1/vertical bar D vertical bar Sigma(d is an element of D) mu(M,D) (M(.) - d). In this paper, we first give the sufficient and necessary condition for L-2(mu(M,D)) to contain an infinite orthogonal exponentials for any integer m > 1. Furthermore, we show that, if m is a prime, mu(M,D) is a spectral measure if and only if m vertical bar b(i), i = 1, 2,..., n. This extends known results in [5,6,28].
引用
收藏
页数:28
相关论文
共 28 条
[1]   Spectrality of infinite Bernoulli convolutions [J].
An, Li-Xiang ;
He, Xing-Gang ;
Li, Hai-Xiang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) :1571-1590
[2]   Spectrality of self-affine Sierpinski-type measures on R2 [J].
Dai, Xin-Rong ;
Fu, Xiao-Ye ;
Yan, Zhi-Hui .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 52 (52) :63-81
[3]   Spectra of Cantor measures [J].
Dai, Xin-Rong .
MATHEMATISCHE ANNALEN, 2016, 366 (3-4) :1621-1647
[4]   On spectral N-Bernoulli measures [J].
Dai, Xin-Rong ;
He, Xing-Gang ;
Lau, Ka-Sing .
ADVANCES IN MATHEMATICS, 2014, 259 :511-531
[5]   Spectral property of Cantor measures with consecutive digits [J].
Dai, Xin-Rong ;
He, Xing-Gang ;
Lai, Chun-Kit .
ADVANCES IN MATHEMATICS, 2013, 242 :187-208
[6]   When does a Bernoulli convolution admit a spectrum? [J].
Dai, Xin-Rong .
ADVANCES IN MATHEMATICS, 2012, 231 (3-4) :1681-1693
[7]   Sierpinski-typespectral self-similar measures [J].
Deng, Qi-Rong ;
Lau, Ka-Sing .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) :1310-1326
[8]   Spectrality of one dimensional self-similar measures with consecutive digits [J].
Deng, Qi-Rong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :331-346
[9]   Fourier frequencies in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (01) :110-137
[10]   Analysis of orthogonality and of orbits in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) :801-823