The cover time of random geometric graphs

被引:0
|
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
机构
[1] Univ Londo, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
RANDOM-WALKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the cover time of random geometric graphs. Let I(d) = [0, 1](d) denote the unit torus in d dimensions. Let D(x, r) denote the ball (disc) of radius r. Let Gamma(d) be the volume of the unit ball D(0,1) in d dimensions. A random geometric graph G = G(d, r, n) in d dimensions is defined as follows: Sample n points V independently and uniformly at random from I(d). For each point x draw a ball D(x,r) of radius r about x. The vertex set V(G) = V and the edge set E(G) = {{v,w} : w not equal v, w is an element of D(v, r)}. Let G(d, r, n), d >= 3 be a random geometric graph. Let c > 1 be constant, and let r = (c log n/(Gamma(d)n))(1/d). Then whp C-G similar to c log (c/c - 1) n log n.
引用
收藏
页码:48 / +
页数:2
相关论文
共 50 条
  • [31] Infinite Random Geometric Graphs
    Anthony Bonato
    Jeannette Janssen
    Annals of Combinatorics, 2011, 15 : 597 - 617
  • [32] The Cover Time of Neighbor-Avoiding Gossiping on Geometric Random Networks
    Gianini, Gabriele
    Damiani, Ernesto
    2013 7TH IEEE INTERNATIONAL CONFERENCE ON DIGITAL ECOSYSTEMS AND TECHNOLOGIES (DEST), 2013, : 7 - 12
  • [33] A TIGHT UPPER BOUND ON THE COVER TIME FOR RANDOM-WALKS ON GRAPHS
    FEIGE, U
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (01) : 51 - 54
  • [34] Cross over of recurrence networks to random graphs and random geometric graphs
    RINKU JACOB
    K P HARIKRISHNAN
    R MISRA
    G AMBIKA
    Pramana, 2017, 88
  • [35] On Connectivity Thresholds in Superposition of Random Key Graphs on Random Geometric Graphs
    Krishnan, B. Santhana
    Ganesh, Ayalvadi
    Manjunath, D.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2389 - +
  • [36] Cross over of recurrence networks to random graphs and random geometric graphs
    Jacob, Rinku
    Harikrishnan, K. P.
    Misra, R.
    Ambika, G.
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (02):
  • [37] Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs
    Komjathy, Julia
    Lodewijks, Bas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1309 - 1367
  • [38] Vertex cover approximations on random graphs
    Asgeirsson, Eyjolfur
    Stein, Cliff
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2007, 4525 : 285 - +
  • [39] On Radio Broadcasting in Random Geometric Graphs
    Elsaesser, Robert
    Gasieniec, Leszek
    Sauerwald, Thomas
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2008, 5218 : 212 - +
  • [40] An uniformity index for random geometric graphs
    Yuan, Mingao
    Rahman, Irin
    STATISTICS, 2025,