The cover time of random geometric graphs

被引:0
|
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
机构
[1] Univ Londo, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
RANDOM-WALKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the cover time of random geometric graphs. Let I(d) = [0, 1](d) denote the unit torus in d dimensions. Let D(x, r) denote the ball (disc) of radius r. Let Gamma(d) be the volume of the unit ball D(0,1) in d dimensions. A random geometric graph G = G(d, r, n) in d dimensions is defined as follows: Sample n points V independently and uniformly at random from I(d). For each point x draw a ball D(x,r) of radius r about x. The vertex set V(G) = V and the edge set E(G) = {{v,w} : w not equal v, w is an element of D(v, r)}. Let G(d, r, n), d >= 3 be a random geometric graph. Let c > 1 be constant, and let r = (c log n/(Gamma(d)n))(1/d). Then whp C-G similar to c log (c/c - 1) n log n.
引用
收藏
页码:48 / +
页数:2
相关论文
共 50 条
  • [1] The Cover Time of Random Geometric Graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (03) : 324 - 349
  • [2] On the cover time of random geometric graphs
    Avin, C
    Ercal, G
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 677 - 689
  • [3] On the cover time and mixing time of random geometric graphs
    Avin, Chen
    Ercal, Gunes
    THEORETICAL COMPUTER SCIENCE, 2007, 380 (1-2) : 2 - 22
  • [4] On the cover time for random walks on random graphs
    Jonasson, J
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03): : 265 - 279
  • [5] The cover time of sparse random graphs
    Cooper, Colin
    Frieze, Alan
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 1 - 16
  • [6] The cover time of random regular graphs
    Cooper, C
    Frieze, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 18 (04) : 728 - 740
  • [7] The cover time of two classes of random graphs
    Cooper, Colin
    Frieze, Alan
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 961 - 970
  • [8] A generalized cover time for random walks on graphs
    Banderier, C
    Dobrow, RP
    FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 113 - 124
  • [9] The cover time of sparse random graphs.
    Cooper, C
    Frieze, A
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 140 - 147
  • [10] The acquaintance time of (percolated) random geometric graphs
    Muller, Tobias
    Pralat, Pawel
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 198 - 214