Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces

被引:32
作者
Maciejewski, Andrzej J. [1 ]
Przybylska, Maria [2 ,3 ]
Yoshida, Haruo [4 ]
机构
[1] Univ Zielona Gora, J Kepler Inst Astron, PL-65417 Zielona Gora, Poland
[2] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
[3] Univ Zielona Gora, Inst Phys, PL-65417 Zielona Gora, Poland
[4] Natl Astron Observ, Tokyo 1818588, Japan
关键词
HAMILTONIAN-SYSTEMS; QUANTUM; SPHERE;
D O I
10.1088/1751-8113/43/38/382001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the necessary conditions for the maximal super-integrability of a certain family of classical potentials defined in the constant curvature two-dimensional spaces. We give examples of homogeneous potentials of degree -2 on E-2 as well as their equivalents on S-2 and H-2 for which these necessary conditions are also sufficient. We show explicit forms of the additional first integrals which can always be chosen as a polynomial with respect to the momenta and which can be of an arbitrary high degree with respect to the momenta.
引用
收藏
页数:15
相关论文
共 18 条
[11]   Necessary conditions for super-integrability of Hamiltonian systems [J].
Maciejewski, Andrzej J. ;
Przybylska, Maria ;
Yoshida, Haruo .
PHYSICS LETTERS A, 2008, 372 (34) :5581-5587
[12]  
MORALES RJJ, 1999, PROGR MATH, V179
[13]   Superintegrability of the Tremblay-Turbiner-Winternitz quantum Hamiltonians on a plane for odd k [J].
Quesne, C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (08)
[14]   Superintegrable systems on the two-dimensional sphere S2 and the hyperbolic plane H2 [J].
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :5026-5057
[15]   Quantum superintegrability and exact solvability in n dimensions [J].
Rodríguez, MA ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (03) :1309-1322
[16]   Non-integrability of some Hamiltonian systems in polar coordinates [J].
Sansaturio, ME ;
VigoAguiar, I ;
Ferrandiz, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16) :5869-5876
[17]   Periodic orbits for an infinite family of classical superintegrable systems [J].
Tremblay, Frederick ;
Turbiner, Alexander V. ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
[18]   An infinite family of solvable and integrable quantum systems on a plane [J].
Tremblay, Frederick ;
Turbiner, Alexander V. ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)