Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces

被引:32
作者
Maciejewski, Andrzej J. [1 ]
Przybylska, Maria [2 ,3 ]
Yoshida, Haruo [4 ]
机构
[1] Univ Zielona Gora, J Kepler Inst Astron, PL-65417 Zielona Gora, Poland
[2] Nicholas Copernicus Univ, Torun Ctr Astron, PL-87100 Torun, Poland
[3] Univ Zielona Gora, Inst Phys, PL-65417 Zielona Gora, Poland
[4] Natl Astron Observ, Tokyo 1818588, Japan
关键词
HAMILTONIAN-SYSTEMS; QUANTUM; SPHERE;
D O I
10.1088/1751-8113/43/38/382001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the necessary conditions for the maximal super-integrability of a certain family of classical potentials defined in the constant curvature two-dimensional spaces. We give examples of homogeneous potentials of degree -2 on E-2 as well as their equivalents on S-2 and H-2 for which these necessary conditions are also sufficient. We show explicit forms of the additional first integrals which can always be chosen as a polynomial with respect to the momenta and which can be of an arbitrary high degree with respect to the momenta.
引用
收藏
页数:15
相关论文
共 18 条
[1]  
[Anonymous], 2004, CRM Proceedings and Lecture Notes
[2]   Superintegrable System on a Sphere with the Integral of Higher Degree [J].
Borisov, A. V. ;
Kilin, A. A. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (06) :615-620
[3]  
FREUDENBURG G, 2009, ARXIV09023440V1MATHA
[4]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912
[5]   Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry [J].
Herranz, FJ ;
Ortega, R ;
Santander, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24) :4525-4551
[6]   CLASSICAL VERSUS QUANTUM INTEGRABILITY [J].
HIETARINTA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1833-1840
[7]   Trigonometric identities, angular Schrodinger equations and a new family of solvable models [J].
Jakubsky, V ;
Znojil, M ;
Luís, EA ;
Kleefeld, F .
PHYSICS LETTERS A, 2005, 334 (2-3) :154-159
[8]   Superintegrability and higher order integrals for quantum systems [J].
Kalnins, E. G. ;
Kress, J. M. ;
Miller, W., Jr. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (26)
[9]   Families of classical subgroup separable superintegrable systems [J].
Kalnins, E. G. ;
Kress, J. M. ;
Miller, W., Jr. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (09)
[10]  
KALNINS EG, 2010, ARXIV10060864V1MATHP