Quasi-Infinite Adaptive Horizon Nonlinear Model Predictive Control

被引:4
作者
Griffith, Devin W. [1 ]
Patwardhan, Sachin C. [2 ]
Biegler, Lorenz T. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Indian Inst Technol, Dept Chem Engn, Bombay, Maharashtra, India
基金
美国国家科学基金会;
关键词
predictive control; process control; robust stability; nonlinear control; nonlinear programming; model-based control; multivariable feedback control;
D O I
10.1016/j.ifacol.2018.09.374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we present a new method for calculating terminal conditions for nonlinear model predictive control (NMPC) that is non-conservative and scalable via the quasi infinite horizon methodology. Then, we introduce adaptive-horizon NMPC, a new method for updating prediction horizon lengths online via nonlinear programming sensitivity calculations. Finally, we show how these methods work together to provide an adaptive horizon NMPC implementation for a quad-tank simulation example. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:506 / 511
页数:6
相关论文
共 13 条
[1]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[2]   A Lyapunov Function for Economic Optimizing Model Predictive Control [J].
Diehl, Moritz ;
Amrit, Rishi ;
Rawlings, James B. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (03) :703-707
[3]  
Grune L, 2011, COMMUN CONTROL ENG, P1
[4]  
Herceg M, 2006, IEEE INTL CONF CONTR, P1702
[5]   Conditions under which suboptimal nonlinear MPC is inherently robust [J].
Pannocchia, Gabriele ;
Rawlings, James B. ;
Wright, Stephen J. .
SYSTEMS & CONTROL LETTERS, 2011, 60 (09) :747-755
[6]   Optimal sensitivity based on IPOPT [J].
Pirnay, Hans ;
Lopez-Negrete, Rodrigo ;
Biegler, Lorenz T. .
MATHEMATICAL PROGRAMMING COMPUTATION, 2012, 4 (04) :307-331
[7]   A survey of industrial model predictive control technology [J].
Qin, SJ ;
Badgwell, TA .
CONTROL ENGINEERING PRACTICE, 2003, 11 (07) :733-764
[8]  
Rajhans C., 2017, IFAC World Congress, pW
[9]  
Rajhans C, 2016, IEEE INT CONF CON AU, P98, DOI 10.1109/ICCA.2016.7505259
[10]  
Rawlings J., 2019, MODEL PREDICTIVE CON