Lunatic fringe null female mice are infertile due to defects in meiotic maturation

被引:87
作者
Hahn, KL
Johnson, J
Beres, BJ
Howard, S
Wilson-Rawls, J [1 ]
机构
[1] Arizona State Univ, Mol & Cellular Grad Program, Tempe, AZ 85284 USA
[2] Arizona State Univ, Biol Grad Program, Tempe, AZ 85284 USA
[3] Arizona State Univ, MARC Program, Tempe, AZ 85284 USA
[4] Arizona State Univ, Sch Life Sci, Tempe, AZ 85284 USA
来源
DEVELOPMENT | 2005年 / 132卷 / 04期
关键词
lunatic fringe; notch; ovary; follicle; meiosis; fertility;
D O I
10.1242/dev.01601
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have demonstrated that Notch genes are expressed in developing mammalian ovarian follicles. Lunatic fringe is an important regulator of Notch signaling. In this study, data are presented that demonstrate that radical fringe and lunatic fringe are expressed in the granulosa cells of developing follicles. Lunatic fringe null female mice were found to be infertile. Histological analysis of the lunatic fringe-deficient ovary demonstrated aberrant folliculogenesis. Furthermore, oocytes from these mutants did not complete meiotic maturation. This is a novel observation because this is the first report describing a meiotic defect that results from mutations in genes that are expressed in the somatic granulosa cells and not the oocytes. This represents a new role for the Notch signaling pathway and lunatic fringe in mammalian folliculogenesis.
引用
收藏
页码:817 / 828
页数:12
相关论文
共 106 条
[1]   Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse [J].
Ackert, CL ;
Gittens, JEI ;
O'Brien, MJ ;
Eppig, JJ ;
Kidder, GM .
DEVELOPMENTAL BIOLOGY, 2001, 233 (02) :258-270
[2]   GAP JUNCTIONS BETWEEN OOCYTE AND COMPANION FOLLICLE CELLS IN MAMMALIAN OVARY [J].
ANDERSON, E ;
ALBERTINI, DF .
JOURNAL OF CELL BIOLOGY, 1976, 71 (02) :680-686
[3]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[4]   Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse [J].
Barrantes, ID ;
Elia, AJ ;
Wünsch, K ;
De Angelis, MH ;
Mak, TW ;
Rossant, J ;
Conlon, RA ;
Gossler, A ;
de la Pompa, JL .
CURRENT BIOLOGY, 1999, 9 (09) :470-480
[5]  
BETTENHAUSEN B, 1995, DEVELOPMENT, V121, P2407
[6]   Glycosyltransferase activity of fringe modulates notch-delta interactions [J].
Brückner, K ;
Perez, L ;
Clausen, H ;
Cohen, S .
NATURE, 2000, 406 (6794) :411-415
[7]  
CHARLTON HM, 1987, ANN ENDOCRINOL-PARIS, V48, P378
[8]   Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system [J].
Chin, MT ;
Maemura, K ;
Fukumoto, S ;
Jain, MK ;
Layne, MD ;
Watanabe, M ;
Hsieh, CM ;
Lee, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6381-6387
[9]   Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila [J].
Cohen, B ;
Bashirullah, A ;
Dagnino, L ;
Campbell, C ;
Fisher, WW ;
Leow, CC ;
Whiting, E ;
Ryan, D ;
Zinyk, D ;
Boulianne, G ;
Hui, CC ;
Gallie, B ;
Phillips, RA ;
Lipshitz, HD ;
Egan, SE .
NATURE GENETICS, 1997, 16 (03) :283-288
[10]   DISRUPTION OF C-MOS CAUSES PARTHENOGENETIC DEVELOPMENT OF UNFERTILIZED MOUSE EGGS [J].
COLLEDGE, WH ;
CARLTON, MBL ;
UDY, GB ;
EVANS, MJ .
NATURE, 1994, 370 (6484) :65-68