Two-step electrochemical reduction of CO2 towards multi-carbon products at high current densities

被引:59
|
作者
Cuellar, N. S. Romero [1 ,2 ,3 ]
Scherer, C. [1 ,2 ,3 ]
Kackar, B. [2 ]
Eisenreich, W. [2 ]
Huber, C. [2 ]
Wiesner-Fleischer, K. [1 ]
Fleischer, M. [1 ]
Hinrichsen, O. [2 ,3 ]
机构
[1] Siemens AG, Corp Technol, Otto Hahn Ring 6, D-81739 Munich, Germany
[2] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany
[3] Catalysis Res Ctr, Ernst Otto Fischer Str 1, D-85748 Garching, Germany
关键词
Cascade electrolysis; Ethanol; Ethylene; n-Propanol; CO/CO2; mixtures; CARBON-DIOXIDE; AQUEOUS-SOLUTIONS; ELECTROREDUCTION; INSIGHTS; MONOXIDE; CONVERSION; CATALYST; EFFICIENT; PH; HYDROCARBONS;
D O I
10.1016/j.jcou.2019.10.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-step electrochemical reduction of CO2 is investigated as an alternative to increase selectivity towards C-2 and C-3 products. In this type of proposed cascade electrocatalytic operation, CO is produced in a first step and subsequently reduced to multi-carbon products in a second step with significantly higher Faradaic efficiencies compared to a one-step process. Research efforts have been focused on the feasibility of the isolated second step with pure CO as reactant, however the interdependencies of both steps need to be considered. Accordingly, two-step electrochemical reduction of CO2 is studied in this work as an integrated system. Taking into account that the study of this technology at high current densities is crucial for industrial applicability, gas diffusion electrodes and flow-cells were used for operation at current densities above - 200 mA cm(-2). Firstly, each step was characterized separately, the first using a silver gas diffusion electrode to generate a mixture of humidified CO, H-2, and unreacted CO2; the second step using copper nanoparticles on a carbon-based gas diffusion structure to obtain C-2 and C-3 products. This step was studied using synthetic mixtures of CO2 and CO with different ratios. Furthermore, experiments with isotope labeled (CO2)-C-13 and (CO)-C-13 were performed in order to obtain some insights on the (electrochemical) reaction path of gas mixtures containing CO2 and CO. Subsequently, the two units were integrated into a system, where the full gas output of the first unit was directly fed to the second unit. The total Faradaic efficiency towards multi-carbon products of this initial system was limited to 20% at total current density of - 470 mA cm(-2). These initial results together with the isotopic labeling studies indicate that the presence of significant amounts of unreacted CO2 from the first step is detrimental for the second step. A significant improvement was achieved by introducing a CO2 absorption column between the two units and after splitting the overall charge flow applied in each cell in accordance with the main reaction at each step. With this set-up a total Faradaic efficiency towards C-2 and C-3 products of 62% at a total current density of - 300 mA cm(-2) was achieved. The results confirm the need for a gas separation technique between the two steps for a feasible two-step electrochemical reduction of CO2.
引用
收藏
页码:263 / 275
页数:13
相关论文
共 50 条
  • [1] Electrochemical reduction of CO2 towards multi-carbon products via a two-step process
    Fu, Xianbiao
    Zhang, Jiahao
    Kang, Yijin
    REACTION CHEMISTRY & ENGINEERING, 2021, 6 (04) : 612 - 628
  • [2] Screening binary alloys for electrochemical CO2 reduction towards multi-carbon products
    Li, Jiang
    Stenlid, Joakim Halldin
    Tang, Michael T.
    Peng, Hong-Jie
    Abild-Pedersen, Frank
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (30) : 16171 - 16181
  • [3] Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities
    Cuellar, N. S. Romero
    Wiesner-Fleischer, K.
    Fleischer, M.
    Rucki, A.
    Hinrichsen, O.
    ELECTROCHIMICA ACTA, 2019, 307 : 164 - 175
  • [4] High carbon utilization in CO2 reduction to multi-carbon products in acidic media
    Xie, Yi
    Ou, Pengfei
    Wang, Xue
    Xu, Zhanyou
    Li, Yuguang C.
    Wang, Ziyun
    Huang, Jianan Erick
    Wicks, Joshua
    McCallum, Christopher
    Wang, Ning
    Wang, Yuhang
    Chen, Tianxiang
    Lo, Benedict T. W.
    Sinton, David
    Yu, Jimmy C.
    Wang, Ying
    Sargent, Edward H.
    NATURE CATALYSIS, 2022, 5 (06) : 564 - 570
  • [5] Enabling technologies for the continuous electrically driven conversion of CO2 and water to multi-carbon products at high current densities
    Dhiman, Mahak
    Chen, Yingying
    Li, Yifei
    Laursen, Anders B.
    Calvinho, Karin U. D.
    Deutsch, Todd G. G.
    Dismukes, G. Charles
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (02) : 717 - 725
  • [6] Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products
    Fan, Lei
    Liu, Chun-Yen
    Zhu, Peng
    Xia, Chuan
    Zhang, Xiao
    Wu, Zhen-Yu
    Lu, Yingying
    Senftle, Thomas P.
    Wang, Haotian
    JOULE, 2022, 6 (01) : 205 - 220
  • [7] Heterogeneously catalyzed two-step cascade electrochemical reduction of CO2 to ethanol
    Theaker, Nolan
    Strain, Jacob M.
    Kumar, Bijandra
    Brian, J. Patrick
    Kumari, Sudesh
    Spurgeon, Joshua M.
    ELECTROCHIMICA ACTA, 2018, 274 : 1 - 8
  • [8] Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products
    Sun, Bo
    Dai, Mingwei
    Cai, Songchi
    Cheng, Haoyan
    Song, Kexing
    Yu, Ying
    Hu, Hao
    FUEL, 2023, 332
  • [9] Engineering tandem catalysts and reactors for promoting electrocatalytic CO2 reduction reaction toward multi-carbon products
    Zhu, Shaojun
    Lu, Tianrui
    Lv, Jing-Jing
    Li, Jun
    Wang, Jichang
    Wang, Xin
    Jin, Huile
    Wang, Zheng-Jun
    Wang, Shun
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 39
  • [10] Boosting the Productivity of Electrochemical CO2 Reduction to Multi-Carbon Products by Enhancing CO2 Diffusion through a Porous Organic Cage
    Chen, Chunjun
    Yan, Xupeng
    Wu, Yahui
    Liu, Shoujie
    Zhang, Xiudong
    Sun, Xiaofu
    Zhu, Qinggong
    Wu, Haihong
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (23)