Phase diagram of the Kane-Mele-Hubbard model

被引:45
作者
Griset, Christian [1 ]
Xu, Cenke [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 04期
关键词
DIRAC FERMIONS; GRAPHENE;
D O I
10.1103/PhysRevB.85.045123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by recent numerical results, we study the phase diagram of the Kane-Mele-Hubbard model, especially the nature of its quantum critical points. The phase diagram of the Kane-Mele-Hubbard model can be understood by breaking the SO(4) symmetry of our previous work down to U(1)(spin) x U(1)(charge) x PH symmetry. The vortices of the in-plane Neel phase carry charge, and the proliferation of the charged magnetic vortex drives the transition between the in-plane Neel phase and the quantum spin Hall (QSH) insulator phase; this transition belongs to the three-dimensional XY universality class. The transition between the liquid phase and the in-plane Neel phase is an anisotropic O(4) transition, which eventually becomes first order due to quantum fluctuation. The liquid-QSH transition is predicted to be first order based on a 1/N calculation.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Theta-terms in nonlinear sigma-models [J].
Abanov, AG ;
Wiegmann, PB .
NUCLEAR PHYSICS B, 2000, 570 (03) :685-698
[2]   Multicritical phenomena in O(n1)⊕O(n2)-symmetric theories -: art. no. 054505 [J].
Calabrese, P ;
Pelissetto, A ;
Vicari, E .
PHYSICAL REVIEW B, 2003, 67 (05)
[3]   Nature of the Spin Liquid State of the Hubbard Model on a Honeycomb Lattice [J].
Clark, B. K. ;
Abanin, D. A. ;
Sondhi, S. L. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[4]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[5]   Topological insulators with inversion symmetry [J].
Fu, Liang ;
Kane, C. L. .
PHYSICAL REVIEW B, 2007, 76 (04)
[6]  
Goldstone J., 1981, Physical Review Letters, V47, P986, DOI 10.1103/PhysRevLett.47.986
[7]   Topological spin Hall states, charged Skyrmions, and superconductivity in two dimensions [J].
Grover, Tarun ;
Senthil, T. .
PHYSICAL REVIEW LETTERS, 2008, 100 (15)
[9]   SU(2) gauge theory of the Hubbard model and application to the honeycomb lattice [J].
Hermele, Michael .
PHYSICAL REVIEW B, 2007, 76 (03)
[10]   Correlation Effects in Quantum Spin-Hall Insulators: A Quantum Monte Carlo Study [J].
Hohenadler, M. ;
Lang, T. C. ;
Assaad, F. F. .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)