Graphene nanoribbons as flexible docks for chemiresistive sensing of gas phase explosives

被引:13
作者
Zhang, Jie [1 ]
Fahrenthold, Eric P. [1 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
关键词
OXIDE; CONDUCTANCE; SENSORS;
D O I
10.1039/d0nr01237h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interpretation of chemiresistive sensor measurements is made difficult by the fact that similar conductance changes may be produced by different adsorbed species. This fundamental ambiguity may be addressed by formulating a new docking paradigm. Instead of decorating graphene with ligands whose structure is well suited to bind with a particular target molecule, a generic dock in the form of a flexible, semiconducting graphene nanoribbon (GNR) may be employed. If the deformed shape of the GNR is then varied, via mechanical actuation, a two dimensional signature (sensor current versus bias voltage and GNR deformation) of the target molecule may be obtained. Ab initio modeling results indicate that this signature may be used to distinguish explosives from background gases and to discriminate between chemically similar explosives.
引用
收藏
页码:10730 / 10736
页数:7
相关论文
共 35 条
[1]   Environmental sensors based on micromachined cantilevers with integrated read-out [J].
Boisen, A ;
Thaysen, J ;
Jensenius, H ;
Hansen, O .
ULTRAMICROSCOPY, 2000, 82 (1-4) :11-16
[2]   Large-area nanopatterned graphene for ultrasensitive gas sensing [J].
Cagliani, Alberto ;
Mackenzie, David Micheal Angus ;
Tschammer, Lisa Katharina ;
Pizzocchero, Filippo ;
Almdal, Kristoffer ;
Boggild, Peter .
NANO RESEARCH, 2014, 7 (05) :743-754
[3]   Sub-ppt gas detection with pristine graphene [J].
Chen, Gugang ;
Paronyan, Tereza M. ;
Harutyunyan, Avetik R. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[4]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475
[5]   2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene [J].
Donarelli, Maurizio ;
Ottaviano, Luca .
SENSORS, 2018, 18 (11)
[6]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[7]   Graphene-zinc oxide based nanomaterials for gas sensing devices [J].
Galstyan, V. ;
Comini, E. ;
Kholmanov, I. ;
Ponzoni, A. ;
Sberveglieri, V. ;
Poli, N. ;
Faglia, G. ;
Sberveglieri, G. .
PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, 2016, 168 :1172-1175
[8]   Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor [J].
Ghosh, Ruma ;
Singh, Arvinder ;
Santra, Sumita ;
Ray, Samit K. ;
Chandra, Amreesh ;
Guha, Prasanta K. .
SENSORS AND ACTUATORS B-CHEMICAL, 2014, 205 :67-73
[9]  
Hanay MS, 2012, NAT NANOTECHNOL, V7, P602, DOI [10.1038/nnano.2012.119, 10.1038/NNANO.2012.119]
[10]   Graphene Films and Ribbons for Sensing of O2, and 100 ppm of CO and NO2 in Practical Conditions [J].
Joshi, Rakes K. ;
Gomez, Humberto ;
Alvi, Farah ;
Kumar, Ashok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6610-6613