Some Iterative Methods for Solving Operator Equations by Using Fusion Frames

被引:0
作者
Jamali, Hasan [1 ]
Kolahdouz, Mohsen [1 ]
机构
[1] Vali Easr Univ Rafsanjan, Fac Math Sci, Dept Math, Rafsanjan, Iran
关键词
Hilbert spaces; Operator equation; Frame; Fusion frames; Chebyshev polynomials; Conjugate gradient method; ADAPTIVE WAVELET METHODS;
D O I
10.2298/FIL2206955J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two iterative methods are constructed to solve the operator equation Lu = f where L : H-* H is a bounded, invertible and self-adjoint linear operator on a separable Hilbert space H. By using the concept of fusion frames, which is a generalization of frame theory, we design some algorithms based on Chebyshev polynomials and adaptive one according to conjugate gradient iterative method, and accordingly, we then investigate their convergence via their correspond convergence rates.
引用
收藏
页码:1955 / 1965
页数:11
相关论文
共 11 条
[1]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[2]  
Casazza P.G., 2013, FINITE FRAMES APPL N
[3]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201
[4]  
Cheny C. C., 1996, INTRO APPROXIMATION
[5]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI 10.1007/978-0-8176-8224-8
[6]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[7]   Adaptive wavelet methods II - Beyond the elliptic case [J].
Cohen, A ;
Dahmen, W ;
DeVore, R .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) :203-245
[8]  
Cohen A., 2003, Numerical Analysis of Wavelet Methods
[9]  
Murphy G. J., 1990, C ALGEBRAS OPERATOR, DOI DOI 10.1016/C2009-0-22289-6
[10]  
Rivlin TJ, 1969, INTRO APPROXIMATION