Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems

被引:82
|
作者
Helfrich, MR [1 ]
El-Kouedi, M [1 ]
Etherton, MR [1 ]
Keating, CD [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
关键词
D O I
10.1021/la051220z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The behavior of metal nanospheres and nanowires and their bioconjugates in aqueous two-phase systems (ATPS) is described. The ATPS used in this work comprised poly(ethylene glycol) (PEG), dextran, and water or aqueous buffer. Au and Ag nanospheres less than 100 nm in diameter partition between the PEG-rich and dextran-rich phases on the basis of their surface chemistry and can be separated on this basis. Larger Au nanospheres and wires accumulate at the interface between the two aqueous phases. The influence of polymer molecular weight and concentration on interfacial assembly of Au wires is described. DNA-derivatized nanowires at the aqueous/aqueous interface retain the ability to selectively bind to fluorescent complementary DNA. In addition, Au nanoparticles have been bound to Au wires via selective DNA hybridization at the ATPS interface. Transmission electron microscopy and thermal denaturation experiments confirm that DNA-driven assembly is responsible for the formation of the nanosphere/wire assemblies. These results demonstrate the biocompatibility of the two-phase interface and point to future use as scaffolding in biorecognition-driven assembly.
引用
收藏
页码:8478 / 8486
页数:9
相关论文
共 50 条
  • [1] Metal affinity partitioning of hemoglobin in an aqueous two-phase systems
    Guinn, MR
    Todd, PW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 91 - BIOT
  • [2] Partitioning of streptokinase in aqueous two-phase systems
    Otto, A.
    Lorenz, G.
    Kopperschlager, G.
    Bioseparation, 5 (01): : 35 - 40
  • [3] Ovomucoid partitioning in aqueous two-phase systems
    de Oliveira, Fabiola Cristina
    dos Reis Coimbra, Jane Selia
    Mendes da Silva, Luis Henrique
    Garcia Rojas, Edwin Elard
    Hespanhol da Silva, Maria do Carmo
    BIOCHEMICAL ENGINEERING JOURNAL, 2009, 47 (1-3) : 55 - 60
  • [4] Partitioning of caseinomacropeptide in aqueous two-phase systems
    da Silva, Cesar A. Sodre
    Coimbra, Jane S. R.
    Rojas, Edwin E. Garcia
    Minim, Luis A.
    da Silva, Luis Henrique Mendes
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2007, 858 (1-2): : 205 - 210
  • [5] Partitioning of glycomacropeptide in aqueous two-phase systems
    da Silva, C. A. S.
    Coimbra, J. S. R.
    Rojas, E. E. G.
    Teixeira, J. A. C.
    PROCESS BIOCHEMISTRY, 2009, 44 (11) : 1213 - 1216
  • [6] Whey protein partitioning in aqueous two-phase systems
    Valle-Guadarrama, Salvador
    Dominguez-Puerto, Ricardo
    Guerra-Ramirez, Diana
    BIOTECNIA, 2021, 23 (03): : 117 - 124
  • [7] Hydrophobic partitioning of proteins in aqueous two-phase systems
    Hachem, F
    Andrews, BA
    Asenjo, JA
    ENZYME AND MICROBIAL TECHNOLOGY, 1996, 19 (07) : 507 - 517
  • [8] Cell partitioning in aqueous two-phase polymer systems
    Cabral, J. M. S.
    CELL SEPARATION: FUNDAMENTALS, ANALYTICAL AND PREPARATIVE METHODS, 2007, 106 : 151 - 171
  • [9] Driving forces for phase separation and partitioning in aqueous two-phase systems
    Johansson, HO
    Karlström, G
    Tjerneld, F
    Haynes, CA
    JOURNAL OF CHROMATOGRAPHY B, 1998, 711 (1-2): : 3 - 17
  • [10] Partitioning of Chromobacterium viscosum lipases in aqueous two-phase systems
    Queiroz, J
    Garcia, FAP
    Cabral, JMS
    BIOSEPARATION, 1995, 5 (05) : 307 - 311