A Time Convolutional Network Based Outlier Detection for Multidimensional Time Series in Cyber-Physical-Social Systems

被引:17
|
作者
Meng, Chao [1 ]
Jiang, Xue Song [1 ]
Wei, Xiu Mei [1 ]
Wei, Tao [2 ]
机构
[1] Qilu Univ Technol, Coll Comp Sci & Technol, Shandong Acad Sci, Jinan 250353, Peoples R China
[2] Qilu Univ Technol, Coll Elect Engn & Automat, Shandong Acad Sci, Jinan 250353, Peoples R China
关键词
Time series analysis; Anomaly detection; Convolution; Hidden Markov models; Data models; Machine learning; Feature extraction; Time series; outlier detection; time convolution network; autoencoder; FAULT-DETECTION; DIAGNOSIS; FRAMEWORK; SELECTION;
D O I
10.1109/ACCESS.2020.2988797
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of the Cyber-Physical-Social Systems(CPSS), a large number of multidimensional time series have been generated in today & x2019;s world, such as: sensor data for industrial equipment operation, vehicle driving data, and cloud server operation and maintenance data and so on. The key task of Cloud & x2013;Fog & x2013;Edge Computing in managing these systems is how to detect anomalous data in a specific time series to facilitate operator action to solve potential system problems. So multidimensional time series outlier detection become an important direction of CPSS data mining and Cloud & x2013;Fog & x2013;Edge Computing research, and it has a wide range of applications in industry, finance, medicine and other fields. This paper proposes a framework called Multidimensional time series Outlier detection based on a Time Convolutional Network AutoEncoder (MOTCN-AE), which can detect outliers in time series data, such as identifying equipment failures, dangerous driving behaviors of cars, etc. Specifically, this paper first uses a feature extraction method to transform the original time series into a feature-rich time series. Second, the proposed TCN-AE is used to reconstruct the feature-rich time series data, and the reconstruction error is used to calculate outlier scores. Finally, the MOTCN-AE framework is validated by multiple time series datasets to demonstrate its effectiveness in detecting time series outliers.
引用
收藏
页码:74933 / 74942
页数:10
相关论文
共 50 条
  • [21] Fault Diagnosis Method Based on Encoding Time Series and Convolutional Neural Network
    Li, Chunlin
    Xiong, Jianbin
    Zhu, Xingtong
    Zhang, Qinghua
    Wang, Shuize
    IEEE ACCESS, 2020, 8 : 165232 - 165246
  • [22] Time series outlier detection and imputation
    Akouemo, Hermine N.
    Povinelli, Richard J.
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [23] Outlier detection in time series data
    Choi, Jeong In
    Um, In Ok
    Cho, Hyung Jun
    KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (05) : 907 - 920
  • [24] Outlier/Anomaly Detection of Univariate Time Series: A Dataset Collection and Benchmark
    Muhr, David
    Affenzeller, Michael
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 163 - 169
  • [25] A Holistic Review of Cyber-Physical-Social Systems: New Directions and Opportunities
    Sobb, Theresa
    Turnbull, Benjamin
    Moustafa, Nour
    SENSORS, 2023, 23 (17)
  • [26] UNSUPERVISED ANOMALY DETECTION FOR TIME SERIES WITH OUTLIER EXPOSURE
    Feng, Jiaming
    Huang, Zheng
    Guo, Jie
    Qiu, Weidong
    33RD INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2021), 2020, : 1 - 12
  • [27] Time Series Anomaly Detection for Cyber-physical Systems via Neural System Identification and Bayesian Filtering
    Feng, Cheng
    Tian, Pengwei
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2858 - 2867
  • [28] Network Anomaly Detection in Time Series using Distance Based Outlier Detection with Cluster Density Analysis
    Flanagan, Kieran
    Fallon, Enda
    Connolly, Paul
    Awad, Abir
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE INTERNET TECHNOLOGIES AND APPLICATIONS (ITA), 2017, : 116 - 121
  • [29] Unsupervised Tensor based Feature Extraction and Outlier Detection for Multivariate Time Series
    Matsue, Kiyotaka
    Sugiyama, Mahito
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [30] Probabilistic Modeling of Information Dynamics in Networked Cyber-Physical-Social Systems
    Wang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (19) : 14934 - 14947