Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

被引:121
|
作者
Chapman, Benjamin J. [1 ,2 ,3 ]
Rosenthal, Eric I. [1 ,2 ,3 ]
Kerckhoff, Joseph [1 ,2 ,3 ,7 ]
Moores, Bradley A. [1 ,2 ,3 ]
Vale, Leila R. [4 ]
Mates, J. A. B. [4 ]
Hilton, Gene C. [4 ]
Lalumiere, Kevin [5 ,8 ]
Blais, Alexandre [5 ,6 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] NIST, Boulder, CO 80305 USA
[5] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[7] HRL Labs LLC, Malibu, CA 90265 USA
[8] Anyon Syst Inc, Dorval, PQ H9P 1G9, Canada
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
NON-RECIPROCITY; THERMAL AGITATION;
D O I
10.1103/PhysRevX.7.041043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (approximate to 10(3) circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Superconducting on-chip spectrometer for mesoscopic quantum systems
    Griesmar, J.
    Rodriguez, R. H.
    Benzoni, V
    Pillet, J-D
    Smirr, J-L
    Lafont, F.
    Girit, C. O.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [32] Integration of molybdenum silicide superconducting nanowires with quantum photonic circuits for on-chip single photon detection
    Erotokritou, Kleanthis
    Heath, Robert M.
    Banerjee, Archan
    Sorel, Marc
    Hadfield, Robert H.
    2017 16TH INTERNATIONAL SUPERCONDUCTIVE ELECTRONICS CONFERENCE (ISEC), 2017,
  • [33] Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths
    Hoang, Thang B.
    Beetz, Johannes
    Lermer, Matthias
    Midolo, Leonardo
    Kamp, Martin
    Hoefling, Sven
    Fiore, Andrea
    OPTICS EXPRESS, 2012, 20 (19): : 21758 - 21765
  • [34] On-chip microwave test circuits for production IC measurements
    Eisenstadt, WR
    Fox, RM
    Yin, QZ
    Yoon, JS
    Zhang, T
    Digital Communications Systems Metrics, 2004, : 213 - 219
  • [35] On-Chip Microwave Frequency Combs in a Superconducting Nanoelectromechanical Device
    Shin, Junghyun
    Ryu, Younghun
    Miri, Mohammad-Ali
    Shim, Seung-Bo
    Choi, Hyoungsoon
    Alu, Andrea
    Suh, Junho
    Cha, Jinwoong
    NANO LETTERS, 2022, 22 (13) : 5459 - 5465
  • [36] On-chip Hybrid Superconducting-Semiconducting Quantum Circuit
    Delfanazari, Kaveh
    Puddy, Reuben K.
    Ma, Pengcheng
    Yi, Teng
    Cao, Moda
    Richardson, Carly
    Farrer, Ian
    Ritchie, David A.
    Joyce, Hannah J.
    Kelly, Michael J.
    Smith, Charles G.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
  • [37] On-chip integration of reconfigurable quantum photonics with superconducting photodetectors
    Gyger, Samuel
    Zichi, Julien
    Schweickert, Lucas
    Elshaari, Ali W.
    Steinhauer, Stephan
    da Silva, Saimon F. Covre
    Rastelli, Armando
    Zwiller, Val
    Joens, Klaus D.
    Errando-Herranz, Carlos
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [38] Highly integrated widely tunable single mode laser with on-chip power control
    Mueller, M.
    Lehnhardt, T.
    Bauer, A.
    Roessner, K.
    Huemmer, M.
    Forchel, A.
    NANOTECHNOLOGY, 2007, 18 (31)
  • [39] Quantum probe of an on-chip broadband interferometer for quantum microwave photonics
    Eder, P.
    Ramos, T.
    Goetz, J.
    Fischer, M.
    Pogorzalek, S.
    Martinez, J. Puertas
    Menzel, E. P.
    Loacker, F.
    Xie, E.
    Garcia-Ripoll, J. J.
    Fedorov, K. G.
    Marx, A.
    Deppe, F.
    Gross, R.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2018, 31 (11):
  • [40] Nonlinear manipulation of tunable microwave amplification and attenuation in superconducting circuits
    Li, Hai-Chao
    Zhang, Hai-Yang
    He, Qing
    Ge, Guo-Qin
    EPL, 2016, 115 (05)