Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

被引:121
|
作者
Chapman, Benjamin J. [1 ,2 ,3 ]
Rosenthal, Eric I. [1 ,2 ,3 ]
Kerckhoff, Joseph [1 ,2 ,3 ,7 ]
Moores, Bradley A. [1 ,2 ,3 ]
Vale, Leila R. [4 ]
Mates, J. A. B. [4 ]
Hilton, Gene C. [4 ]
Lalumiere, Kevin [5 ,8 ]
Blais, Alexandre [5 ,6 ]
Lehnert, K. W. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] NIST, Boulder, CO 80305 USA
[5] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[6] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada
[7] HRL Labs LLC, Malibu, CA 90265 USA
[8] Anyon Syst Inc, Dorval, PQ H9P 1G9, Canada
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 04期
基金
美国国家科学基金会;
关键词
NON-RECIPROCITY; THERMAL AGITATION;
D O I
10.1103/PhysRevX.7.041043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (approximate to 10(3) circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On-Chip Microwave Quantum Hall Circulator
    Mahoney, A. C.
    Colless, J. I.
    Pauka, S. J.
    Hornibrook, J. M.
    Watson, J. D.
    Gardner, G. C.
    Manfra, M. J.
    Doherty, A. C.
    Reilly, D. J.
    PHYSICAL REVIEW X, 2017, 7 (01):
  • [2] On-Chip Superconducting Microwave Circulator from Synthetic Rotation
    Kerckhoff, Joseph
    Lalumiere, Kevin
    Chapman, Benjamin J.
    Blais, Alexandre
    Lehnert, K. W.
    PHYSICAL REVIEW APPLIED, 2015, 4 (03):
  • [3] Design of an On-Chip Superconducting Microwave Circulator with Octave Bandwidth
    Chapman, Benjamin J.
    Rosenthal, Eric, I
    Lehnert, K. W.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04)
  • [4] On-chip quantum simulation with superconducting circuits
    Houck, Andrew A.
    Tuereci, Hakan E.
    Koch, Jens
    NATURE PHYSICS, 2012, 8 (04) : 292 - 299
  • [5] On-chip quantum simulation with superconducting circuits
    Andrew A. Houck
    Hakan E. Türeci
    Jens Koch
    Nature Physics, 2012, 8 (4) : 292 - 299
  • [6] Mechanical on-chip microwave circulator
    S. Barzanjeh
    M. Wulf
    M. Peruzzo
    M. Kalaee
    P. B. Dieterle
    O. Painter
    J. M. Fink
    Nature Communications, 8
  • [7] Mechanical on-chip microwave circulator
    Barzanjeh, S.
    Wulf, M.
    Peruzzo, M.
    Kalaee, M.
    Dieterle, P. B.
    Painter, O.
    Fink, J. M.
    NATURE COMMUNICATIONS, 2017, 8
  • [8] Low-loss on-chip superconducting microwave circulator assisted by shunting capacitors
    Kumar, N. Pradeep
    Le, Dat Thanh
    Pakkiam, Prasanna
    Stace, Thomas M.
    Fedorov, Arkady
    Physical Review Research, 7 (01):
  • [9] Low-loss on-chip superconducting microwave circulator assisted by shunting capacitors
    Kumar, N. Pradeep
    Le, Dat Thanh
    Pakkiam, Prasanna
    Stace, Thomas M.
    Fedorov, Arkady
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [10] Superconducting Switch for Fast On-Chip Routing of Quantum Microwave Fields
    Pechal, M.
    Besse, J. -C.
    Mondal, M.
    Oppliger, M.
    Gasparinetti, S.
    Wallraff, A.
    PHYSICAL REVIEW APPLIED, 2016, 6 (02):