Local rings of exchange rings

被引:22
作者
Ara, P [1 ]
Lozano, MG
Molina, MS
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[2] Univ Malaga, Fac Ciencias, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
D O I
10.1080/00927879808826405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the exchange property for non-unital rings in terms of their local rings at elements, and we use this characterization to show that the exchange property is Morita invariant for idempotent rings. We also prove that every ring contains a greatest exchange ideal (with respect to the inclusion).
引用
收藏
页码:4191 / 4205
页数:15
相关论文
共 21 条
[1]  
ABRAMS G, APPROXIMATING RINGS
[2]   MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS [J].
ABRAMS, GD .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) :801-837
[3]  
Anh P.N., 1987, TSUKUBA J MATH, V11, P1
[4]   LOCAL INHERITANCE IN JORDAN ALGEBRAS [J].
ANQUELA, JA ;
CORTES, T ;
MONTANER, F .
ARCHIV DER MATHEMATIK, 1995, 64 (05) :393-401
[5]  
ARA P, IN PRESS ISRAEL J MA
[6]  
ARA P, IN PRESS J ALGEBRA
[7]  
ARA P, UNPUB MORITA EQUIVAL
[8]   REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS OF ALGEBRAIC SYSTEMS [J].
CRAWLEY, P ;
JONSSON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :797-&
[9]   THE LOCAL ALGEBRAS OF JORDAN SYSTEMS [J].
DAMOUR, A ;
MCCRIMMON, K .
JOURNAL OF ALGEBRA, 1995, 177 (01) :199-239
[10]   MORITA EQUIVALENCE FOR IDEMPOTENT RINGS [J].
GARCIA, JL ;
SIMON, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 76 (01) :39-56