Wnt5a Promotes Lysosomal Cholesterol Egress and Protects Against Atherosclerosis

被引:18
作者
Awan, Sara [1 ]
Lambert, Magalie [1 ]
Imtiaz, Ali [1 ]
Alpy, Fabien [2 ]
Tomasetto, Catherine [2 ]
Oulad-Abdelghani, Mustapha [2 ]
Schaeffer, Christine [3 ]
Moritz, Chloe [3 ]
Julien-David, Diane [4 ]
Najib, Souad [5 ]
Martinez, Laurent O. [5 ]
Matz, Rachel L. [1 ]
Collet, Xavier [5 ]
Silva-Rojas, Roberto [2 ]
Bohm, Johann [2 ]
Herz, Joachim [6 ]
Terrand, Jerome [1 ]
Boucher, Philippe [1 ]
机构
[1] Univ Strasbourg, UMR S INSERM 1109, 1 Pl Hop, F-67000 Strasbourg, France
[2] Univ Strasbourg, Inst Genet & Biol Mol & Cellulaire IGBMC, Strasbourg, France
[3] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France
[4] Univ Strasbourg, UMR 7178, CNRS, Strasbourg, France
[5] INSERM, UMR 1048, I2MC, Inst Metab & Cardiovasc Dis, 1 Ave Prof Jean Poulhes, Toulouse, France
[6] Univ Texas Southwestern Med Ctr Dallas, Dept Mol Genet, Dallas, TX 75390 USA
关键词
atherosclerosis; homeostasis; ligands; lysosomes; MECHANISM; BINDING; IDENTIFICATION; STORAGE;
D O I
10.1161/CIRCRESAHA.121.318881
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Impairment of cellular cholesterol trafficking is at the heart of atherosclerotic lesions formation. This involves egress of cholesterol from the lysosomes and 2 lysosomal proteins, the NPC1 (Niemann-Pick C1) and NPC2 that promotes cholesterol trafficking. However, movement of cholesterol out the lysosome and how disrupted cholesterol trafficking leads to atherosclerosis is unclear. As the Wnt ligand, Wnt5a inhibits the intracellular accumulation of cholesterol in multiple cell types, we tested whether Wnt5a interacts with the lysosomal cholesterol export machinery and studied its role in atherosclerotic lesions formation. Methods: We generated mice deleted for the Wnt5a gene in vascular smooth muscle cells. To establish whether Wnt5a also protects against cholesterol accumulation in human vascular smooth muscle cells, we used a CRISPR/Cas9 guided nuclease approach to generate human vascular smooth muscle cells knockout for Wnt5a. Results: We show that Wnt5a is a crucial component of the lysosomal cholesterol export machinery. By increasing lysosomal acid lipase expression, decreasing metabolic signaling by the mTORC1 (mechanistic target of rapamycin complex 1) kinase, and through binding to NPC1 and NPC2, Wnt5a senses changes in dietary cholesterol supply and promotes lysosomal cholesterol egress to the endoplasmic reticulum. Consequently, loss of Wnt5a decoupled mTORC1 from variations in lysosomal sterol levels, disrupted lysosomal function, decreased cholesterol content in the endoplasmic reticulum, and promoted atherosclerosis. Conclusions: These results reveal an unexpected function of the Wnt5a pathway as essential for maintaining cholesterol homeostasis in vivo.
引用
收藏
页码:184 / 199
页数:16
相关论文
共 40 条
[1]   WNT5A Encodes Two Isoforms with Distinct Functions in Cancers [J].
Bauer, Matthieu ;
Benard, Jean ;
Gaasterland, Terry ;
Willert, Karl ;
Cappellen, David .
PLOS ONE, 2013, 8 (11)
[2]   Wnt5a: A player in the pathogenesis of atherosclerosis and other inflammatory disorders [J].
Bhatt, Pooja M. ;
Malgor, Ramiro .
ATHEROSCLEROSIS, 2014, 237 (01) :155-162
[3]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[4]   LRP: Role in vascular wall integrity and protection from atherosclerosis [J].
Boucher, P ;
Gotthardt, M ;
Li, WP ;
Anderson, RGW ;
Herz, J .
SCIENCE, 2003, 300 (5617) :329-332
[5]   CHOLESTEROL SENSING Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex [J].
Castellano, Brian M. ;
Thelen, Ashley M. ;
Moldavski, Ofer ;
Feltes, McKenna ;
van der Welle, Reini E. N. ;
Mydock-McGrane, Laurel ;
Jiang, Xuntian ;
Van Eijkeren, Robert J. ;
Davis, Oliver B. ;
Louie, Sharon M. ;
Perera, Rushika M. ;
Covey, Douglas F. ;
Nomura, Daniel K. ;
Ory, Daniel S. ;
Zoncu, Roberto .
SCIENCE, 2017, 355 (6331) :1306-1311
[6]   Wnt5a is expressed in murine and human atherosclerotic lesions [J].
Christman, Mark A., II ;
Goetz, Douglas J. ;
Dickerson, Eric ;
McCall, Kelly D. ;
Lewis, Christopher J. ;
Benencia, Fabian ;
Silver, Mitchell J. ;
Kohn, Leonard D. ;
Malgor, Ramiro .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 294 (06) :H2864-H2870
[7]   Low LAL (Lysosomal Acid Lipase) Expression by Smooth Muscle Cells Relative to Macrophages as a Mechanism for Arterial Foam Cell Formation [J].
Dubland, Joshua A. ;
Allahverdian, Sima ;
Besler, Katrina J. ;
Ortega, Carleena ;
Wang, Ying ;
Pryma, Collin S. ;
Boukais, Kamel ;
Chan, Teddy ;
Seidman, Michael A. ;
Francis, Gordon A. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (06) :E354-E368
[8]   mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells [J].
Eid, Walaa ;
Dauner, Kristin ;
Courtney, Kevin C. ;
Gagnon, AnneMarie ;
Parks, Robin J. ;
Sorisky, Alexander ;
Zha, Xiaohui .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (30) :7999-8004
[9]   Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation [J].
El Asmar, Zeina ;
Terrand, Jerome ;
Jenty, Marion ;
Host, Lionel ;
Mlih, Mohamed ;
Zerr, Aurelie ;
Justiniano, Helene ;
Matz, Rachel L. ;
Boudier, Christian ;
Scholler, Estelle ;
Garnier, Jean-Marie ;
Bertaccini, Diego ;
Thierse, Daniele ;
Schaeffer, Christine ;
Van Dorsselaer, Alain ;
Herz, Joachim ;
Bruban, Veronique ;
Boucher, Philippe .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (10) :5116-5127
[10]   How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains [J].
Fantini, Jacques ;
Barrantes, Francisco J. .
FRONTIERS IN PHYSIOLOGY, 2013, 4