Robust Standard Gradient Descent Algorithm for ARX Models Using Aitken Acceleration Technique

被引:14
作者
Chen, Jing [1 ]
Gan, Min [2 ]
Zhu, Quanmin [3 ]
Narayan, Pritesh [3 ]
Liu, Yanjun [4 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Univ West England, Dept Engn Design & Math, Bristol BS16 1QY, Avon, England
[4] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Acceleration; Mathematical model; Standards; Parameter estimation; Nonlinear equations; Computational modeling; Aitken acceleration technique; ARX model; convergence rate; parameter estimation; standard gradient descent (SGD) algorithm; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1109/TCYB.2021.3063113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust standard gradient descent (SGD) algorithm for ARX models using the Aitken acceleration method is developed. Considering that the SGD algorithm has slow convergence rates and is sensitive to the step size, a robust and accelerative SGD (RA-SGD) algorithm is derived. This algorithm is based on the Aitken acceleration method, and its convergence rate is improved from linear convergence to at least quadratic convergence in general. Furthermore, the RA-SGD algorithm is always convergent with no limitation of the step size. Both the convergence analysis and the simulation examples demonstrate that the presented algorithm is effective.
引用
收藏
页码:9646 / 9655
页数:10
相关论文
共 33 条
  • [11] H∞ Containment Control of Multiagent Systems Under Event-Triggered Communication Scheduling: The Finite-Horizon Case
    Chen, Wei
    Ding, Derui
    Ge, Xiaohua
    Han, Qing-Long
    Wei, Guoliang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (04) : 1372 - 1382
  • [12] Cheney E.W., 2007, NUMERICAL MATH COMPU
  • [13] Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
    Ding, Feng
    Xu, Ling
    Meng, Dandan
    Jin, Xue-Bo
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [14] Two-stage Gradient-based Iterative Estimation Methods for Controlled Autoregressive Systems Using the Measurement Data
    Ding, Feng
    Lv, Lei
    Pan, Jian
    Wan, Xiangkui
    Jin, Xue-Bo
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (04) : 886 - 896
  • [15] The innovation algorithms for multivariable state-space models
    Ding, Feng
    Zhang, Xiao
    Xu, Ling
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (11) : 1601 - 1618
  • [16] Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering
    Ding, Feng
    Wang, Xuehai
    Mao, Li
    Xu, Ling
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 62 : 211 - 223
  • [17] Performance analysis of the generalised projection identification for time-varying systems
    Ding, Feng
    Xu, Ling
    Zhu, Quanmin
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (18) : 2506 - 2514
  • [18] Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems
    Ding, Feng
    Liu, Ximei
    Chen, Huibo
    Yao, Guoyu
    [J]. SIGNAL PROCESSING, 2014, 97 : 31 - 39
  • [19] Dwell-Time-Based Standard H∞ Control of Switched Systems Without Requiring Internal Stability of Subsystems
    Fu, Jun
    Ma, Ruicheng
    Chai, Tianyou
    Hu, Zhentao
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) : 3019 - 3025
  • [20] On Some Separated Algorithms for Separable Nonlinear Least Squares Problems
    Gan, Min
    Chen, C. L. Philip
    Chen, Guang-Yong
    Chen, Long
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (10) : 2866 - 2874