Robust Standard Gradient Descent Algorithm for ARX Models Using Aitken Acceleration Technique

被引:14
作者
Chen, Jing [1 ]
Gan, Min [2 ]
Zhu, Quanmin [3 ]
Narayan, Pritesh [3 ]
Liu, Yanjun [4 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Univ West England, Dept Engn Design & Math, Bristol BS16 1QY, Avon, England
[4] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Acceleration; Mathematical model; Standards; Parameter estimation; Nonlinear equations; Computational modeling; Aitken acceleration technique; ARX model; convergence rate; parameter estimation; standard gradient descent (SGD) algorithm; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1109/TCYB.2021.3063113
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust standard gradient descent (SGD) algorithm for ARX models using the Aitken acceleration method is developed. Considering that the SGD algorithm has slow convergence rates and is sensitive to the step size, a robust and accelerative SGD (RA-SGD) algorithm is derived. This algorithm is based on the Aitken acceleration method, and its convergence rate is improved from linear convergence to at least quadratic convergence in general. Furthermore, the RA-SGD algorithm is always convergent with no limitation of the step size. Both the convergence analysis and the simulation examples demonstrate that the presented algorithm is effective.
引用
收藏
页码:9646 / 9655
页数:10
相关论文
共 33 条
  • [1] Conjugate gradient method for fuzzy symmetric positive definite system of linear equations
    Abbasbandy, S
    Jafarian, A
    Ezzati, R
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 1184 - 1191
  • [2] A blind approach to the Hammerstein-Wiener model identification
    Bai, EW
    [J]. AUTOMATICA, 2002, 38 (06) : 967 - 979
  • [3] Convergence acceleration during the 20th century
    Brezinski, C
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 1 - 21
  • [4] A new Aitken type method for accelerating iterative sequences
    Bumbariu, Oana
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (01) : 78 - 82
  • [5] Basis Function Matrix-Based Flexible Coefficient Autoregressive Models: A Framework for Time Series and Nonlinear System Modeling
    Chen, Guang-Yong
    Gan, Min
    Chen, C. L. Philip
    Li, Han-Xiong
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (02) : 614 - 623
  • [6] Improved gradient descent algorithms for time-delay rational state-space systems: intelligent search method and momentum method
    Chen, Jing
    Zhu, Quanmin
    Hu, Manfeng
    Guo, Liuxiao
    Narayan, Pritesh
    [J]. NONLINEAR DYNAMICS, 2020, 101 (01) : 361 - 373
  • [7] Multi-step-length gradient iterative algorithm for equation-error type models
    Chen, Jing
    Ding, Feng
    Liu, Yanjun
    Zhu, Quanmin
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 115 : 15 - 21
  • [8] Modified stochastic gradient identification algorithms with fast convergence rates
    Chen, Jing
    Ding, Feng
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (09) : 1281 - 1286
  • [9] System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques
    Chen, Tianshi
    Andersen, Martin S.
    Ljung, Lennart
    Chiuso, Alessandro
    Pillonetto, Gianluigi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) : 2933 - 2945
  • [10] Decentralized Particle Filter With Arbitrary State Decomposition
    Chen, Tianshi
    Schon, Thomas B.
    Ohlsson, Henrik
    Ljung, Lennart
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (02) : 465 - 478